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Abstract: Estuarine phytoplankton communities are acclimated to environmental parameters that
change seasonally. With climate change, they are having to respond to extreme weather events that
create dramatic alterations to ecosystem function(s) on the scale of days. Herein, we examined the
short term (<1 month) shifts in phytoplankton communities associated with four pulse disturbances
(Tax Day Flood in 2016, Hurricane Harvey in 2017, Tropical Storm Imelda in 2019, and Winter Storm
Uri in 2021) that occurred in Galveston Bay (TX, USA). Water samples collected daily were processed
using an Imaging FlowCytobot (IFCB), along with concurrent measurements of temperature, salinity,
and chlorophyll-a. Stronger storm events with localized heavy precipitation and flooding had greater
impacts on community composition, increasing diversity (Shannon–Weiner and Simpson Indices)
while a cold wave event lowered it. Diatoms and dinoflagellates accounted for the largest fraction of
the community, cyanobacteria and chlorophytes varied mostly with salinity, while euglenoids, crypto-
phytes, and raphidophytes, albeit at lower densities, fluctuated greatly. The unconstrained variance of
the redundancy analysis models pointed to additional environmental processes than those measured
being responsible for the changes observed. These findings provide insights into the impact of pulse
disturbances of different magnitudes, durations, and timings on phytoplankton communities.

Keywords: extreme event; hurricane; cold wave; Imaging FlowCytobot; community composition

1. Introduction

Phytoplankton play a vital role as primary producers in freshwater, estuarine, and
marine ecosystems [1]. Estuaries support high primary productivity and phytoplankton
diversity, in part due to organic carbon and nutrient input from terrestrial sources [2,3].
Changes in water quality parameters, caused by anthropogenic or natural sources, can
have significant effects on phytoplankton community structure [4]. In some cases, such as
nutrient enrichment, this elicits blooms, some of which may be harmful or toxic to both the
surrounding fauna and humans [5]. The distribution of phytoplankton is mostly governed
by geographic region, water quality parameters such as temperature and salinity, and
light availability and nutrient enrichment [6–9]. Phytoplankton communities have been
the focus of many recent ecological studies concerning estuarine systems due to ongoing
changes caused by biotic and abiotic factors [10–12]. With climate change, phytoplankton
are also having to respond to dramatic alterations in ecosystems which occur during
pulse disturbances [13] associated with extreme weather events such as storms, floods,
or cold-wave events. Their response ultimately depends on both the characteristics of
a particular storm and the physical–chemical conditions of the water column before the
storm’s passage [14–17]. Concerns are increasing for estuaries that are experiencing an
increased frequency in pulse disturbances (e.g., [18]).
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The composition of phytoplankton communities in estuaries are important indicators
of ecosystem health [19]. Ochrophyta (Bacillariophyceae; diatoms), Dinophyta (dinoflagel-
lates), and Cyanophyta (cyanobacteria) are the most abundant groups of phytoplankton
in estuaries and coastal zones [4,20–22]. Other prominent groups include Cryptophyta,
Euglenophyta, and less so, Chlorophyta, Haptophyta, and Raphidophyta. Each of these
groups have different ranges of water quality parameters (temperature, salinity, etc.) for
optimal growth [23]. Monitoring changes in water quality parameters against changes in
phytoplankton community is a critical step in determining how bays and estuaries may
be changing over time. Prior studies examining phytoplankton community dynamics
have used a variety of approaches including microscopy [24–26], photopigment analysis
(e.g., [4,7,8]), and more recently, genetic analysis (e.g., [27]), with each method having
its benefits and drawbacks. Photopigment analysis can only be used to distinguish phy-
toplankton groups to the taxa level (diatoms, dinoflagellates), while microscopy allows
species level analysis but has associated extensive costs and work hours, while the genetic
analysis often is still limited by the many “unknowns” in the databases. High-throughput
sequencing and metabarcoding technology is providing valuable information about small
(<10 µm) phytoplankton which are difficult to discern using most methods, including
traditional flow cytometry. None of these tools are, however, practical for long-term moni-
toring or daily measurements. The Imaging FlowCytobot (IFCB) is the latest in a series of
tools developed for continuous monitoring of phytoplankton community structure [28,29].
Flow cytometry has been demonstrated as an effective analysis technique in phytoplank-
ton research [30]. Previously developed flow cytometers such as the FlowCAM [31] and
the CytoSub [32] do not have the field endurance and resolution for prolonged, high-
resolution ecological studies [28]. The IFCB has a demonstrated ability to effectively
sample cells in the 10–100 µm size range, a critical group comprising many diatoms and
dinoflagellates [15,33–36]. Nonetheless, it too has its drawbacks, including the challenges
of building classifiers which effectively identify all members of the community within the
size window of its flow cell.

When responding to extreme weather events, both people and instruments are impor-
tant assets. In the current study, we explored IFCB and concurrently collected water quality
data (salinity, temperature, and chlorophyll) to examine short term (<1-month post-storm)
phytoplankton responses to four storms of varying magnitude, duration, and timing that
hit Galveston Bay (TX, USA) between 2016 and 2021. Herein, we examined data for the Tax
Day Flood in 2016, Hurricane Harvey in 2017, Tropical Storm Imelda in 2019, and Winter
Storm Uri in 2021 (Table 1). Other major storm events during the study period include the
Texas–Oklahoma Flood and Tornado Outbreak in 2015 and the Independence Day Flooding
in 2018, but these were not included herein [see [37,38] for details of these storms]. The sam-
pling presented herein was collected at one fixed location (Figure 1) as part of a long-term
monitoring program. Concurrent physiochemical data (e.g., nutrients) are not available.
Tropical storms and hurricanes are not uncommon in this region [3,14,27,39]. Within the
context of global change, cold waves characterized by rapid cooling, leading to a rapid sea
surface temperature or air temperature decrease in estuaries [40,41], are now becoming
more common in this region. This study provides new insights into the potential impacts
of future climate events on estuarine ecosystems, particularly the relationships governing
phytoplankton community structure. These findings provide insights into the impact of
pulse disturbance events of different magnitude, duration, and timing on phytoplankton
communities examined using an IFCB.
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Table 1. Major storm events examined with information on duration and pre- and post-storm periods.

Tax Day Flood Hurricane Harvey
Category 4 Tropical Storm Imelda Winter Storm Uri

Year 2016 2017 2019 2021

Dates Apil 18 August 27–September 2 September 17–19 February 11–20

Season * Spring Summer Fall Winter

Table 1. Cont.

Tax Day Flood Hurricane Harvey
Category 4 Tropical Storm Imelda Winter Storm Uri

Precipitation (cm) at sampling
site ** 1.4 40 28.6 2.6

Precipitation (cm) in Houston 43 >76 25–30 1–3

Precipitation (cm) along
Houston-GaIveston corridor

15–30, up to 60 in
some areas 50–76 >76 1–5

For RDA, pre-storm period 4/1–4/17 8/1–8/31 9/1–9/17 2/1–2/15

For RDA, post-storm period 4/18–5/4 9/1–9/29 9/18–9/30 2/6–3/7

Alternative name, if used
in literature

North American
Storm Complex Texas Freeze

* In Galveston Bay, winter occurs from December to February, spring from March to May, summer from June
to August, and fall (or autumn) from September to November. ** As measured at the nearby Scholes Airport,
Galveston, TX, USA.
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Figure 1. Galveston Bay, Texas located in the northwestern Gulf of Mexico. The IFCB samples and 
water quality data were collected from the marina located on the Texas A&M University at Galves-
ton Campus. 
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Figure 1. Galveston Bay, Texas located in the northwestern Gulf of Mexico. The IFCB samples
and water quality data were collected from the marina located on the Texas A&M University at
Galveston Campus.

2. Materials and Methods
2.1. Study Site and Sampling Station

Galveston Bay (Figure 1), also known as the Trinity–San Jacinto estuary, is ecologically
and economically one of the most important systems for the Texas coast and the Gulf of
Mexico [42]. Galveston Bay is the sixth largest estuary in the United States (1554 km2),
and second largest in the northern Gulf of Mexico. This subtropical estuary located in a
watershed covering over 64,000 km2 [43] is often affected by tropical storms and hurri-
canes [4,8,44]. The excessive precipitation loads excess inorganic nutrients and suspended
particulates into rivers upstream, impacting the estuary [45], and reshaping the phytoplank-
ton community. In addition, Galveston Bay has recently experienced record-breaking low
air temperatures in winter, including a super-cold wave in the 2020/2021 La Niña winter.

All subsurface (>0.30 to 100 cm) samples were collected in the small boat basin of
the Texas A & M University at Galveston campus (29◦18′ N, 94◦49′ W) (Figure 1). This
location was chosen to sample phytoplankton communities moving in and out of the bay
from the Gulf of Mexico. It is at the point furthest from the main riverine inputs into the
bay. Sampling started April 2015 and has continued daily except on occasions when the
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instrument had to be shut down for repairs, or when the campus was closed or inaccessible
due to evacuations for storms, flooding, and other severe weather.

2.2. Major Storm Events

We examined four storms of varying magnitude, duration, and timing which hit
Galveston Bay (TX, USA) including the Tax Day Flood (2016), Hurricane Harvey (2017),
Tropical Storm Imelda (2019) and Winter Storm Uri (2021) (Table 1). The first three of
the events examined were associated with severe winds (hurricanes, tropical storms)
or floods, while the fourth event involved the freeze event associated with snow and
sleet. Information on the duration and type of storm was collected from the NOAA
National Weather Service (weather.gov, accessed on 18 January 2023) and summarized in
Table 1. Study periods used in this analysis for the major storms examined begin around
15 to 30 days prior to, and after, the event (Table 1). Storm study periods were split into
pre- and post-storm periods based on whichever of the following criteria were met first:
five days after the start of the storm event, the end of the storm event, or the first day
of sampling following the storm event. Broader periods were examined in an earlier
analysis of these storms [38]; we found these shorter periods improved the model results
(see below).

2.3. Sample and Environmental Data Collection

Daily water samples and environmental data were collected from the sampling sta-
tion between 09:00 and 10:30 Central Standard Time. Water samples were collected
into an opaque acid washed and triple rinsed bottle. Chlorophyll (chl)-a concentration
was measured as a proxy for phytoplankton biomass using the procedure of Arar and
Collins [46]. Briefly, cells were filtered under low vacuum (<130 Kpa) onto GF/F glass mi-
crofiber filters and frozen at −20 ◦C. After extraction in 5 mL of 40:6:54 acetone/deionized
water/dimethyl-sulfoxide solution for ~24 h in low light and low temperature, samples
were mixed thoroughly by vortex, centrifuged at 2500 rpm (5 min), and the supernatant
analyzed using a Turner 10AU Fluorometer (SN: 00239900). Each sample was then acidified
using a dilute HCl solution, and chl-a concentrations calculated after correcting for phaeo-
phytin. Salinity (reported on the unitless practical salinity scale) and temperature (◦C)
were measured using a calibrated MS5 Hydrolab water quality sonde (SN: 160500067114)
with a Hydras 3 LT (CN: 6234218). Local precipitation data were collected from Scholes
International Airport (Galveston) from the NOAA National Centers for Environmental
Information (NCEI) (ncei.noaa.gov, accessed on 1 February 2023) database.

2.4. IFCB

Within hours of collection, 5 mL increments of the homogenized water samples were
run through the IFCB (McLane Research Laboratories). The IFCB captures images when
chl-a fluorescence is detected in particles from 10 to 100 µm [28,29]. The sample water is
pulled into the IFCB through a 130 µm pre-filter to remove large particles and debris. The
sample is then passed through a red laser to detect the presence of chl-a in particles (e.g.,
phytoplankton cells). If chl-a fluorescence is detected, an image is captured and an onboard
‘blob’ analysis algorithm selects the region in each frame containing particles of interest. All
images from an aliquot are saved along with associated metadata for the image (e.g., chl-a
fluorescence, side-scatter). For a detailed description of the analytical system, please refer
to Olson and Sosik [28]. Additional 5 mL aliquots are run until at least 200 phytoplankton
cell images per daily sample are captured.

More than 90 categories (Table S1) of morphologically distinct phytoplankton, zoo-
plankton, and ‘other’ material were classified using protocols of Sosik and Olson [29]. Each
‘category’ is a phytoplankton group, genus, or species. When clear identification was not
possible, a descriptive name (e.g., round flagellate cells, chain forming diatoms) was used.
Manual identification was required to compile and sort at least 100 images per category to
train the classifier in image recognition [47,48]. Herein, we only considered those categories

weather.gov
ncei.noaa.gov
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created for phytoplankton and those in which we could assign a taxonomic classification
(e.g., unknown dinoflagellate was included, small balls were excluded).

For each sample, images were extracted into a single file using MATLAB software
package (version 7.2; Mathworks, Inc., Natick, MA, USA) and the associated Image Pro-
cessing Toolbox (version 5.2; Mathworks, Inc.) (https://github.com/hsosik/ifcb-analysis,
accessed on 18 October 2021). The Digital Image Processing Using MATLAB (DIPUM)
toolbox (version 1.1.3; imageprocessingplace.com, accessed on 18 October 2021) processed
images and a random forest classifier (MATLAB treebagger function; [49] was trained. The
overall classification error rate for the IFCB classifier was 34% with 35% of images placed
in an unclassified category. Images are considered unclassified if they did not meet the
threshold required to place them into a category. The random forest classifier “optimum”
output has the most stringent threshold for image classification and was used in this study.
Application of the optimum classification threshold, resulting in a lowering of the overall
error rate to 15%. Unclassified images were excluded from further analysis. Error rates for
individual categories can vary and are often related to the cell shape and size (e.g., large
diatoms are more easily identified while smaller, round cells are not).

2.5. Diversity Analysis

Ecological diversity metrics were calculated using the classified IFCB categories
(cells/mL) according to Krebs [50] and separated into pre- and post-storm periods. Species
richness (d) was used to determine the number of phytoplankton categories present in daily
samples. The Shannon–Wiener (H’) and Simpson (1-D) indices were selected based on their
utility in marine ecology studies on large community samples [51,52]. Pielou’s evenness
(J’) is a measure of the cell density of each category relative to the overall population. The
Shannon–Wiener index typically ranges between 1.5 and 3.5 while the Simpson index and
Pielou’s evenness index ranges from 0 to 1.

2.6. Statistical Analysis

Results are presented as averages or medians plus/minus standard deviations. In the R
coding language in the Rstudio program, statistical analyses were performed using the pack-
ages vegan, BiodiversityR, tidyverse, in the ggplot2 format for data visualization [53,54].
Decostand and dplyr were used in the statistical analysis to test for normality and standard-
ization. Ggsci, ggrepel, and ggforce were used to edit the text and labels of the plots [55,56].

The relative abundance of the phytoplankton groups rather than total abundance
was used to more easily determine trends in the community over time [57]. Relationships
between environmental parameters and IFCB data were examined using redundancy
analysis (RDA) according to [58]. RDA involves a two-step process; a multiple linear
regression is applied to each category in a response matrix, our IFCB data, using variables
from an explanatory matrix, our environmental parameter data, and a PCA fit onto this
intermediate matrix to reduce dimensionality to two explanatory axes [59].

IFCB data (cells/mL) was normalized using the Hellinger transformation, a convex
standardization that helps minimize effects of different total abundances of major taxonomic
groups [60]. Environmental data were transformed (log x + 1) and standardized to achieve
as normalized distribution as possible, confirmed by the Shapiro–Wilk test of normality,
with as little collinearity between variables as possible, confirmed by the Variance Inflation
Factor. RDA summary information and permutation tests were used to determine explained
variance and significance of the model, axes, and vectors. RDA figures include points for
each higher taxonomic group, vectors for each environmental parameter, and points for
each daily sample. In each RDA figure, ellipsoids were drawn around pre- and post-
storm period points. These ellipsoids represent normalized 95% confidence intervals of
community composition by multivariate t-distribution (p-value < 0.05).

To visualize the day-to-day data in bubble plots, we grouped categories into a sin-
gle genus when there was more than one species classified (e.g., for Chaetoceros spp.).
Abundance of taxa (cells ml−1) was represented by the traits of bubbles (size and color)

https://github.com/hsosik/ifcb-analysis
imageprocessingplace.com
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and organized by major phytoplankton category: diatoms, chlorophytes, cyanobacteria,
dinoflagellates, cryptophytes, euglenoids, and raphidophytes. The data are represented on
an exponential scale to facilitate visualization, but no transformation was applied. When
no bubble was displayed, abundance was equal to zero. Bubble plots were performed
in R software v4.0.5 [53], and RStudio v2023.12.0 [55] using “ggplot2” v.3.5.0 [54] and
“RColorBrewer” v.1.1-3 packages [56].

3. Results

There is a rich diversity of phytoplankton detected with the IFCB at this location,
much of which is reflected in the >90 phytoplankton categories (Table S1). Unfortu-
nately, we were not able to identify the significant population of phytoplankton that
are <10 µm, but are aware that numerically, they are important contributors to the
overall community. The most readily detectable taxa with the IFCB are the diatoms,
which includes common coastal species such as Thalassiosira sp., Asterionellopsis sp.,
Chaetoceros spp., and Coscinodiscus sp. Further, there are a variety of marine cyanobac-
teria present year-round, but after large storm events, freshwater species appear for a
short time as a result of being flushed into the bay by the major rivers. Chlorophytes
are also common, but few are difficult to distinguish between species unless they have
very distinctive features (Table S1).

3.1. 2016 Tax Day Flood

Water temperatures increased from pre-storm values of 20.78 ± 1.49 ◦C to 24.07 ± 0.82 ◦C
post-storm (Table 2); the shift was consistent with normal seasonal temperature trends rather
than because of the storm event. Salinity pre-storm (16.99 ± 3.72) was higher than post-storm
(12.61 ± 2.87), indicating that flood waters had influenced the sampling site. Precipitation
pre-storm (6.68 cm) was half that which fell after the storm (>12 cm) (Table 2). There was an
overall (total) increase in chl-a post-storm (10.30 ± 4.09 µg/L) compared with pre-storm values
(7.91 ± 1.13 µg/L), with maximum values of 15.13 µg/L recorded (Table 2).
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Table 2. Environmental data collected at the sampling site. Minimum (min), maximum (max), and average
values (plus or minus standard errors) were calculated for temperature (◦C), salinity, and chlorophyll-a
(µg/L), while total precipitation (ppt, cm) and the highest daily total precipitation are reported (max value)
for rainfall. Study periods are defined in Table 1. Refer to [38] for additional environmental data pre- and
post-storms.

Overall Average ± SE Pre-Min Pre-Max Pre-Average ± SE Post-Min Post-Max Post-Average ± SE

2016 Tax Day Flood

Temp 22.48 ± 2.03 17.83 22.51 20.78 ± 1.49 22.57 25.38 24.07 ± 0.82

Sal 14.73 ± 3.97 10.96 23.42 16.99 ± 3.72 9.56 20.16 12.61 ± 2.87

Ppt 18.73 (total) 0 6.6 6.68 (total) 0 3.53 12.05 (total)

Chl-a 9.14 ± 3.27 5.69 9.84 7.91 ± 1.13 3.34 15.13 10.30 ± 4.09

2017 Hurricane Harvey

Temp 28.83 ± 1.74 24.22 31.37 29.93 ± 1.33 25.02 29.53 27.69 ± 1.33

Sal 20.83 ± 2.25 7.32 31.85 26.88 ± 4.64 4.50 21.00 14.52 ± 5.56

Ppt 67.75 (total) 0 4.54 9.74 (total) 0 21.94 58.01 (total)

Chl-a 8.65 ± 2.46 3.47 13.75 10.14 ± 2.30 3.92 8.95 7.09 ± 1.46

2019 Tropical Storm Imelda

Temp 28.20 ± 2.28 23.40 30.88 29.22 ± 2.39 23.95 28.65 27.09 ± 1.51

Sal 21.13 ± 4.92 21.60 28.00 25.55 ± 1.68 13.81 20.29 16.33 ± 1.79

Ppt 45.38 (total) 0 0.10 0.18 (total) 0 17.29 45.20 (total)

Chl-a 7.42 ± 8.78 3.03 6.88 4.36 ± 1.09 1.81 10.36 6.20 ± 2.71

2021 Winter Storm Uri

Temp 13.63 ± 1.74 10.65 15.55 13.92 ± 1.48 9.19 15.47 13.33 ± 1.93

Sal 23.61 ± 1.41 19.84 26.33 23.44 ± 1.68 22.31 25.64 23.78 ± 1.03

Ppt 2.77 (total) 0 1.72 2.22 (total) 0 0.43 0.55 (total)

Chl-a 4.47 ± 1.29 2.68 7.06 4.28 ± 1.38 1.85 5.89 4.68 ± 1.14

In Spring 2016, prior to the flood, the abundance of diatoms relative to other groups
was greatest, accounting for ~52% of the community (range from minimum to maximum:
22–71%), while in the post flood period examined, the relative abundance decreased to an
average of 37% but the ranges were similar (18–77%) (Figure 2a). In general, the relative
abundance of dinoflagellates (22%) did not change with the passage of the flood (6–58%),
except when the storm was immediately over the sampling station. At this time, they
accounted for up to 50% of the community. Chlorophytes and euglenoids were impacted
by the flood event (Figure 2a). Pre-storm chlorophytes accounted for a smaller portion of
the community (6–21%, average: 13%) than following the storm (9–35%, average: 22%). For
euglenoids, there was a greater relative abundance after the storm (average: 5%) than prior
(average: 2%). Cyanobacteria made up only 3% of the relative abundance of the community
but could be up to 17% on some days. Similarly, cryptophytes were variable over the
dates examined, usually accounting for 5 to 10% of the community, with an average of
9%, and varying from 0 to 31%. Raphidophytes accounted for the smallest fraction of the
community (0.2%) and were only present on 11 of the 31 sampling days.

An RDA was used to examine the relationship between environmental parameters
and the phytoplankton community during the 2016 storm study period (Figure 3a; Table 3).
The model is globally significant (F = 2.228, p = 0.016) and explains 10.93% of the variance in
the daily community data. Temperature and chl-a were the only significant environmental
parameters in the model (temperature: F = 2.738, p = 0.043, chl-a: F = 2.729, p = 0.040) while
salinity was not significant. Only the first model axis, RDA1, was significant (F = 5.251,
p = 0.014) and accounted for 15.6% of the community and species variation while the
second axis, RDA2, was not significant (F = 0.983, p = 0.714) and only accounted for 2.9% of
the variation.
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Figure 2. Relative abundances of the major taxonomic groups pre- and post-major storm events
(denoted with a vertical dashed line). Phytoplankton were categorized as diatoms (orange), chloro-
phytes (dark green), cyanobacteria (blue), dinoflagellates (red), cryptophytes (pink), euglenoids (light
green), and raphidophytes (light red) are shown. (a) Tax Day Flood in 2016, (b) Hurricane Harvey in
2017, (c) Tropical Storm Imelda in 2019, and (d) Winter Storm Uri in 2021.
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Figure 3. Redundancy analysis of the major taxonomic groups and significant water quality param-
eters pre- (green) and post- (blue) storm. Phytoplankton category codes: DIA—diatoms, CHL—
chlorophytes, CYA—cyanobacteria, DIN—dinoflagellates, CRY—cryptophytes, EUG—euglenoids, 
and RAP—raphidophytes. Vector codes: Temp—temperature (°C), Sal—salinity, and Chl—

Figure 3. Redundancy analysis of the major taxonomic groups and significant water quality pa-
rameters pre- (green) and post- (blue) storm. Phytoplankton category codes: DIA—diatoms, CHL—
chlorophytes, CYA—cyanobacteria, DIN—dinoflagellates, CRY—cryptophytes, EUG—euglenoids,
and RAP—raphidophytes. Vector codes: Temp—temperature (◦C), Sal—salinity, and Chl—
chlorophyll-a (µg/L). (a) Tax Day Flood in 2016, (b) Hurricane Harvey in 2017, (c) Tropical Storm
Imelda in 2019, and (d) Winter Storm Uri in 2021. These ellipsoids represent normalized 95% confi-
dence intervals of community composition by multivariate t-distribution (p-value = 0.05).

Table 3. Summary information and significance values for RDA plots during each storm. Significance
codes are: * = 0.05, ** = 0.01, *** = 0.001.

Model Tax Day Flood
Hurricane

Harvey
Category 4

Tropical Storm
Imelda

Winter Storm
Uri

Year 2016 2017 2019 2021

Dates * April 18 August 27–
September 2 September 17–19 February 11–20
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Table 3. Cont.

Model Tax Day Flood
Hurricane

Harvey
Category 4

Tropical Storm
Imelda

Winter Storm
Uri

Constrained
Variance 0.195 0.447 0.444 0.277

Residual
Variance 0.802 0.553 0.557 0.723

Adjusted
R-squared Value 0.109 0.407 0.377 0.149

Global sig. 0.016 * 0.001 *** 0.001 *** 0.096

Axis sig. RDA1 0.014 * 0.001 *** 0.001 *** 0.128

Axis sig. RDA2 0.714 0.085 0.045 * 0.964

Term sig. Temp 0.043 * 0.001 *** 0.205 0.682

Term sig. Sal 0.306 0.001 *** 0.001 *** 0.04 *

Term sig. Chl 0.04 * 0.016 * 0.005 ** 0.176

VIF Temp 1.058 1.762 1.084 1.189

VIF Sal 1.175 1.764 1.275 1.088

VIF Chl 1.188 1.174 1.192 1.200

The pre-storm 95% confidence interval ellipsoid is almost completely enclosed within
the post-storm ellipsoid, indicating that the phytoplankton community did not signifi-
cantly change following the storm event. The larger size of the post-storm ellipsoid is
consistent with the increase in diversity in the post-storm period (Figure 3). Higher chl-a
and temperature values were more associated with the post-storm period while higher
salinity was more associated with the pre-storm period. While communities were not
significantly different, chlorophytes, euglenoids, and cryptophytes were more associated
with the post-storm community.

3.2. 2017 Hurricane Harvey

Temperatures preceding Hurricane Harvey (29.93 ± 1.33 ◦C) were warmer than those
following the storm (27.69 ± 1.33 ◦C) (Table 2). Salinity was most dramatically impacted by
Hurricane Harvey, with pre-storm averages (26.88 ± 4.64) significantly higher than those
after the storm (14.52 ± 5.56). This shift in salinity was driven by precipitation, of which
more than 74 cm fell during the study period (Tables 1 and 2), with over 58 cm falling in just
four days (between 26–29 August). This was more than the typical three-month summer
rainfall (46.89 ± 4.75 cm), and lowered salinities at the IFCB sampling site for several weeks
after the storm (Table 1). The flood waters also resulted in lowered chl-a (7.09 ± 1.46 µg/L)
after the storm relative to before the storm (10.14 ± 2.30 µg/L).

While some phytoplankton groups (diatoms, cyanobacteria, and chlorophytes) in the
community increased after Hurricane Harvey during the summer of 2017, other groups
decreased (Figure 2b). Preceding the hurricane, the relative abundance of diatoms was
32% (14–58%) while afterwards this increased to 51% (12–80%). Similarly with cyanobac-
teria, which only accounted for 2% (1.9–6%) of the community before the hurricane, they
then were 15% (0–65%) of the relative abundance. Chlorophytes in the pre-storm period
were either absent or made up a very small fraction of the community (average = 3%),
whereas after the hurricane’s passage, they contributed to 16% of the community (1–34%).
Similarly, cryptophytes were a small fraction of the community, varying from an aver-
age of 0.6% before to 5% after. Two weeks after the hurricane’s passage, their abundance
increased to 5–10%. Euglenoids and raphidophytes were essentially absent pre- and
post-hurricane, accounting for a max of 3% and 4.8% and 0.5% and 0.3%, respectively.
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Interestingly, dinoflagellate relative abundance decreased from 61% pre-hurricane (39–82%)
to 12% afterwards (3–39%).

Relationships between environmental parameters and the phytoplankton community
of Galveston Bay over the Hurricane Harvey study period were explored using RDA
(Figure 3b; Table 3). The model is globally significant (F = 11.31, p = 0.001) and explains
40.74% of the variance in the daily community data. All three environmental parameters
were significant (temperature: F = 19.59, p = 0.001; salinity: F = 10.11, p = 0.001; chl-a:
F = 4.24, p = 0.016) with salinity most strongly driving the variation in daily community
data. Only the first model axis RDA1 was significant (F = 31.05, p = 0.001) and accounted
for 40.9% of the daily community and species variation while RDA2 (F = 2.72, p = 0.085)
was not significant and only accounted for 3.6%.

The ellipsoids representing normalized 95% confidence intervals around pre-storm
points and post-storm points were separated with very little overlap, indicating the post-
storm community significantly deviated from pre-storm conditions. The post-storm group
had a larger range, larger ellipsoid, and more outliers than the pre-storm group, repre-
senting a more diverse community in the period following Hurricane Harvey. Pre-storm
points were correlated with higher temperature, salinity, and chl-a values while post-storm
points were correlated with lower values. Dinoflagellates were strongly associated with
the pre-storm community while chlorophytes and cyanobacteria were strongly associated
with the post-storm community. Euglenoids, diatoms, and cryptophytes were associated
more with the post-storm community than pre-storm and were the groups which occupied
the most points in common.

3.3. 2019 Tropical Storm Imelda

Water temperatures after Tropical Storm Imelda decreased, with pre-storm tempera-
tures (29.22 ± 2.39 ◦C) higher than post-storm (27.09 ± 1.51 ◦C) (Table 2). This change was
driven by seasonal fluctuations rather than the storm. Changes in salinity were however
driven by the storm, with a drop from 25.55 ± 1.68 to 16.33 ± 1.79. A substantial amount of
precipitation fell during the storm (44.35 cm), with less thereafter (Table 2). Values for chl-a
preceding the storm varied from 3 to 7 µg/L, while after the storm they were ~2 µg/L for a
few days before increasing to between 6–10 µg/L (Table 2).

Unlike with the previous storm events, diatoms made up a relatively small proportion
of the phytoplankton community prior to (18%; 5–67%) and immediately after (20%; 5–82%)
the storm (Figure 2c). Dinoflagellates were also similar pre- and post-storm, although more
variable, with an average of 21% (7–38%) and 17% (1–47%), respectively. Cyanobacteria
on the other hand, were largely absent, often less than 4%, but closer to 1%. Chlorophytes
made up a larger proportion of the community (50%) pre-storm (15–75%), but this was
greatly diminished after the storm to 13% (0–35%). In the weeks after Tropical Storm
Imelda, cryptophytes became proportionally more dominant increasing from an average
of 6% (3–13%) to 20% (3–47%). A week after the storm had passed, a euglenoid bloom
was observed, with this group averaging around 3% (0.4–8%) to as much as 64% (average
of 29%). Thereafter, the euglenoids rarely accounted for more than 5% of the community.
Raphidophytes made up the lowest proportions of the phytoplankton community (0.3%)
pre- and post-storm.

An RDA was used to examine the relationship between environmental parameters and
the phytoplankton community during the Tropical Storm Imelda study period (Figure 3c;
Table 3). The model is globally significant (F = 6.64, p = 0.001) and explains 37.67% of the
variance in the daily community data. Salinity (F = 13.59, p = 0.001) and chl- a (F = 4.84,
p = 0.005) were significant environmental parameters in the model and both strongly drove
the community variation. Temperature (F = 1.49, p = 0.205) was non-significant and drove
community variation the least. Both the first and second axis models, RDA1 (F = 15.27,
p = 0.001) and RDA2 (F = 3.63, p = 0.045), were significant and accounted for 34% and
8.1% of the community and species variation, respectively.
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The pre- and post-storm 95% confidence interval ellipsoids are partially separated but
somewhat overlap, not indicating a significant shift in the phytoplankton community fol-
lowing the storm event. The larger size and width of the post-storm ellipsoid is associated
with an increase in diversity following the storm event. Pre-storm points were correlated
with higher temperature and salinity values while post-storm points were correlated with
higher chl-a values. Chlorophytes were strongly associated with pre-storm points while
euglenoids and cryptophytes were strongly associated with post-storm points. Cyanobacte-
ria, diatoms, and dinoflagellates were not particularly associated with either study period,
diatoms, and raphidophytes were not particularly associated with either study period.

3.4. 2021 Winter Storm Uri

Water temperatures before the 2021 Texas Freeze began near 15 ◦C and dropped to
around 10 ◦C and stayed very low for ten days (Table 2). These were lower temperatures
than the previously recorded low in the area which occurred in 1909 [61]. The first Win-
ter Weather Advisory in Galveston was issued on February 11th and the temperatures
continued to drop until February 16th. These record-breaking low air temperatures were as-
sociated with a La Niña winter super-cold wave event. The temperature steadily increased
until the morning of February 20 when the winter storm passed. Salinities, precipitation,
and chl-a did not vary pre- and post-storm (Table 2).

In the winter, diatoms (84%) accounted for most of the phytoplankton community at
the sampling location (Figure 2d), with little variability pre- (51–87%; average–76%) and
post- (66–96%; average–87%) freeze. Dinoflagellate and cyanobacteria proportions were
relatively stable during the Texas Freeze study period, varying from 2% to 14% with an
average of only 4% and from 0.4% to 3% with an average of 0.8%, respectively. Chlorophytes
and cryptophytes essentially disappeared immediately after the storm, before returning
to winter levels. Chlorophytes typically varied from 5 to 25%, while cryptophytes varied
from 3 to 15% and average of ~6%. Euglenoids and raphidophytes were almost completely
absent from the community (<0.1%).

An RDA was used to examine the relationship between environmental parameters and
the phytoplankton community during the Texas Freeze study period (Figure 3d; Table 3).
The model is globally significant (F = 2.17, p = 0.096) to p = 0.1 and explains 14.89% of the
variance in the daily community data. Salinity was a significant environmental variable
(F = 4.35, p = 0.04) in the model, along with chl-a (F = 1.87, p = 0.176) and temperature
(F = 0.28, p = 0.682) being non-significant but with temperature and salinity mostly strongly
driving the community and species variation. Neither of the model axes, RDA1 (F = 6.25,
p = 0.128) accounting for 26.6% of the community and species variation, and RDA2
(F = 0.21, p = 0.964) accounting for 0.9% of the variation were significant.

Pre- and post-storm ellipsoids, representing normalized 95% confidence intervals
around points in each period, were partially overlapping, indicating the community did
not significantly shift following the storm event. The post-storm ellipsoid is similar in
size to the pre-storm ellipsoid, indicating the community diversity did not significantly
increase following the storm event. Post-storm points were correlated with changes in
salinity and chl-a values while pre-storm points were correlated more with changing
temperature. No phytoplankton group was significantly more associated with either period
while chlorophytes and cryptophytes were more present in the pre-storm period and
diatoms were more present in the post-storm period.

3.5. Ecological Diversity

Storm events caused varying effects on the diversity of the phytoplankton community
in Galveston Bay. The pre-storm species richness was driven by season, with median values
in summer < spring/fall < winter (Figure 4a). The weaker wet storms in 2016 (also 2015
and 2018 in 38), along with the cold wave in 2021, had lower species richness post-storm
while the stronger storms Hurricane Harvey in 2017 and Tropical Storm Imelda in 2019,
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which involved more localized precipitation at our sampling station, had similar median
richness pre- and post-storm (Figure 4a).
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index, (c) Simpson index, and (d) Pielou index.

In general, the Galveston Bay phytoplankton communities had greater diversity prior
to the 2016 and 2021 storms, and less so in 2017 and 2019, based on the Shannon–Weiner
index which had median values of >3 and <2.3, respectively (Figure 4b). The median
Shannon–Weiner index was lower after the 2016 and 2021 storms, dropping to 2.7 and
2.3 respectively. On the other hand, the median values increased to >2.4 after 2017 and
2021 storms, respectively. The range (based on the box plot percentiles) was greatest
after the 2021 super-cold wave event, but least after the 2016 flood event, reflecting that
these events had very different effects on the phytoplankton communities. Simpson’s
index (1-D) median values varied between 0.75 (post-storm 2019) and 0.93 (pre-storm 2016)
(Figure 4c), with shifts to higher and lower diversity mirroring the patterns observed for
the Shannon–Weiner index (Figure 4b).

In 2016 and 2017 (pre- and post-storm), median Pielou index values were high and
similar (0.84 and 0.82, and 0.75 and 0.82, respectively), indicating that all categories (genera)
are represented in similar numbers in the daily samples (Figure 4d). By contrast, the median
Pielou index was lower (0.58) before Tropical Storm Imelda in 2019 than post-storm (0.73)
while the opposite was observed in 2021, with the Pielou’s index at 0.79 before the storm
but 0.67 afterwards (Figure 4d). In addition, the range of Pielou values was broader during
the 2019 and 2021 sampling periods, indicating that one or few categories were dominating
the daily samples.

3.6. Dominant Phytoplankton Shifts

In 2016, the diatoms Asterionellopis sp., Chaetoceros spp., Ditylum sp., Entomoneis spp.,
Leptocylindrus spp., and Thalassiosira spp., were present in significantly (4- to 10-fold)
higher cell densities pre-storm than post-storm (Figure 5a). Similarly, the cyanobacteria
Anabaena sp., the dinoflagellate Karenia mikimotoi, the cryptophyte Cryptomonas spp., and
the euglenophyte Eutreptiella spp. were present in elevated cell densities pre-storm than
post-storm (Figure 5a). Only the green algae Pyramimonas sp. were present in 3–4-fold
higher cell densities post-storm relative to pre-storm conditions.
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categories classified with the IFCB pre- and post-major storm events (denoted with a vertical dashed
line). (a) Tax Day Flood in 2016, (b) Hurricane Harvey in 2017, (c) Tropical Storm Imelda in 2019, and
(d) Winter Storm Uri in 2021. Bubble size and the continuous color scale represent the abundance (cells
mL−1) (data no transformed). No bubble was displayed when the abundance was equal to zero. Data
is shown as day to day (MM/DD) in the x-axis. A side color bar refers to each major phytoplankton
category: diatoms (orange), chlorophytes (dark green), cyanobacteria (blue), dinoflagellates (red),
cryptophytes (pink), euglenoids (light green), and raphidophytes (light red).

By contrast, cell densities of almost all species were lower prior to Hurricane Harvey in
2017 (Figure 5b). After the storm’s passage, the benthic diatoms Navicula spp., and Nitzschia
spp., were present in 13 times higher cell densities. Given the wind driven resuspension of
sediments because of the storm, this was not entirely surprising, but they may not have
been captured without the daily sampling accomplished with the IFCB. Further, as a result
of the flooding associated with this storm, numerous freshwater and other cyanobacteria
were detected at the IFCB sampling station in high cell densities including species such as
Anabaena sp., Merismopedia sp., Microcystis sp. which we were able to identify and others
which were certainly cyanobacteria based on their cellular characteristics, but not as readily
identifiable (Figure 5b). The euglenophyte Eutreptiella spp. and an unknown cryptophyte
also were found to be in high cell densities (5- to 15-fold) post-storm compared to pre-storm.

In 2019, cell densities pre- and post-storm either doubled or halved (Figure 5c). The
only exceptions were the dinoflagellates Akashiwo sanguinea, Gyrodinium sp., and Heterocapsa
sp., which appeared to be 12- to 40-times higher in cell densities than post-storm compared
to before the storm. These are all known harmful algal bloom species. Again, we found the
euglenophyte Eutreptiella spp. and an unknown cryptophyte also were found to be in high
cell densities (5- to 15-fold) post-storm compared to pre-storm.

In 2021, we generally found much higher overall cell densities of all species, but espe-
cially the diatoms (Figure 5d compared with Figure 5a–c), perhaps given that this sampling
effort was focused during the winter. Most categories had similar cell densities before and
after the storm. The most notable change was the significant increase in Thalassiosira spp.
after the storm relative to those present before the storm (Figure 5d).

4. Discussion

The extreme weather patterns that occur in subtropical areas play a pronounced
role in hydrogeological processes that influence phytoplankton communities in estuarine
systems [3,9,14]. The IFCB monitoring made it possible to detect species of euglenophytes
and cryptophytes in this study which are known to play important roles in food web
dynamics but are often overlooked by traditional approaches [62,63]. Dinoflagellates, in-
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cluding those known to cause red tide blooms and/or harmful bloom events, are commonly
present, but rarely at densities which would cause concern at this location. In the middle,
western, and eastern sectors of the bay and in the bayous (Figure 1), dinoflagellates and
other harmful algal bloom species have been documented to occur at elevated cell densities,
leading to hatchery closures and/or fish kill events [7,63,64]. Given that climate conditions
are projected to become more unstable, pulse disturbances leading to phytoplankton com-
munity shifts due to alterations in temperature, light availability, and nutrient supply of
varying magnitude and duration will be seen more frequently [3,13,65–67]. Prior studies
suggest that, in addition to short term direct precipitation, increased freshwater inflow and
its effects on nutrient and light levels can have a larger impact on long term phytoplankton
community structure in many estuaries [68,69]. Further, if an ecosystem is experiencing
eutrophication prior to, or because of the pulse disturbance, this will increase the absolute
scale of the chl-a response [18]. Indeed, earlier studies in Galveston Bay have emphasized
the influence that freshwater inflows, and associated nutrients and hydrography, have
in shaping phytoplankton communities (e.g., [4,7,8,44]). The sampling locations in these
studies were within the main water body of the bay and often closer to riverine inputs,
while in the present study, the IFCB is located adjacent to the Gulf of Mexico, some ~50 km
from the major freshwater sources. While these historical studies are key for understanding
the “estuarine or bay” phytoplankton population composition and dynamics, the current
study findings may not always align because of the difference in sampling location, and
hence, factors influencing the community.

Diatoms make up the largest fraction of the Galveston Bay phytoplankton community
in the colder and more saline conditions, particularly in cooler months ([7,38], present
study); this has also been observed in other sub-tropical estuarine systems [70]. Winters
had lower relative abundances of other major phytoplankton, particularly euglenoids and
cryptophytes [38]. Summers, on the other hand, had higher proportions of these groups,
as well as dinoflagellates. This cycle of seasonally alternating diatom and dinoflagellate
abundance is consistent with published studies assessing community structure using other
methods (e.g., [4,8,71]). While winter and summer phytoplankton communities and envi-
ronmental conditions are relatively stable, fall and spring are periods of greater variability.
Changing environmental parameters (e.g., temperature, salinity) in these transitional sea-
sons (i.e., autumn/fall and spring) have been known to affect phytoplankton community
dynamics and bloom formation [72,73]. Roelke et al. [44] and Dorado et al. [8] found that
many non-linear-related processes such as nutrient flux, turbidity, water column mixing,
and freshwater inflow drive community changes within Galveston Bay. Along with these
processes, saltwater intrusion can strongly influence estuarine phytoplankton communities
by transporting resuspended sediment and nutrient rich water, altering light and nutrient
availability [74]. This is of particular importance to this study given the proximity of the
sampling location to the Gulf of Mexico.

This study examined four major storm events which had differing effects on the
phytoplankton community. While these storm events are known to have differed in the
volume and duration of localized rainfall (Table 1) and wind, there was also a variety of
environmental processes which ultimately altered community structure. Stelzer et al. [18]
proposed that differing intensities of pulse disturbance events affect not only the impact
but also the longevity of the effects to phytoplankton communities. The 2016 storm event
had non-significant changes in the phytoplankton community (see overlapping ellipsoids
in the RDA model and similar communities) (Figures 3a and 5a). This storm had the least
significant RDA model that explained the lowest proportions of variance of any of the
storm models (Table 3). The 2018 storm event (Independence Day Flooding) had more than
twice the precipitation of the 2016 storm and a stronger shift in the community composition
was recorded following the storm [38]. The phytoplankton responses to these events were
similar those observed for Hurricanes Dennis and Floyd in 1999 which impacted North
Carolina’s Pamlico Sound, with fast growing, opportunistic taxonomic groups such as
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chlorophytes and cryptophytes increasing, while the larger, slow-growing dinoflagellates
decreased in abundance [3].

More impactful storms with greater precipitation and larger changes to environmental
parameters are likely to have stronger influences on the phytoplankton community [13].
Freshwater inflows (river discharge) from flooding, bringing with it changes in nutrient
levels and turbidity, have the potential to affect phytoplankton communities on a larger
scale and over a longer period than only precipitation caused changes in salinity [9]. How-
ever, both flooding and direct precipitation can have multiplicative impacts on community
change depending on their proximity and severity [14]. The tropical storm systems in
2017 and 2019, Hurricane Harvey and Tropical Storm Imelda, had much higher localized
precipitation over the sampling site, nearly three times more than the 2018 storm. Because
of the rainfall, Hurricane Harvey caused floodwaters from the Trinity and San Jacinto
Rivers to transport high volumes of cool, fresh, sediment- and nutrient-rich water into
Galveston Bay [39], which were flushed past the sampling site (Figure 1) [27]. These storms
(Hurricane Harvey and Tropical Storm Imelda) had a larger impact on the phytoplankton
community (Figure 3), with the RDA model ellipsoids being either completely or mostly
separate (Figure 3b,c), indicating that there was a 95% confidence that the communities
were different. These findings are also supported by significant models explaining much of
the community variation (Table 3). After Hurricane Harvey, there was a notable decline in
chl-a as the biomass was initially flushed out of the bay [75], with a concurrent shift in the
community [27]. There was a massive influx of freshwater (3–5 times the volume of the
bay; [76]) and with it, associated cyanobacteria accounting for a larger proportion of the
community. Tropical Storm Imelda resulted in an increase in chl-a and a community shift
similar to that observed with the 2016 storm, and an increased proportion of chlorophytes,
euglenoids, and cryptophytes (Figure 2). In addition to these distinctions, Harvey caused
a change in the community that persisted for over two months while the Imelda commu-
nity returned to pre-storm community composition about a month after the storm event
(Figures 2 and 3). Studies vary but most agree that it took approximately three months
for all the freshwater from Harvey to be discharged from the Bay [61,76]. On the other
hand, it took a relatively short time for Imelda to be completely flushed (weeks; present
study). Wetz and Paerl [14] observed notably distinct ecological effects following storms
of different strengths; they associated these changes to variable nutrient influx and water
column mixing. These factors were likely contributors to the larger storm in their study
coinciding with a decrease in algal biomass, similar to observations for Hurricane Harvey.
The increased inflow of nutrient and sediment rich waters during Harvey and the extent
of the subsequent flooding [27,75], compared to shorter Imelda flooding, likely was the
forcing factor of the extended duration of the community shift observed in Galveston Bay.

The 2021 Texas Freeze was the only major storm event examined herein associated with
a super-cold wave (the 2020/2021 La Niña winter); this had a noticeably different effect on
the phytoplankton community. Diatoms, already present in high proportions for the winter,
accounted for almost 100% of the community for several days following the cold wave
(Figures 2d and 5d). Ding et al. [17] and references therein reported smaller phytoplankton
species are associated with colder temperatures. This has led to the miniaturization of
phytoplankton in many estuaries including the Pearl River Estuary in the South China Sea
(see [17]). The RDA model did not show a significant change in the community (Figure 3d).
Different types of pulse disturbances are known to have differing effects on communities,
particularly disturbances that are uncommon for an ecosystem [13]. Hence, while the shift
to more diatoms and fewer other taxa was unexpected, perhaps it is more related to the
unusual nature of freezes in a subtropical estuary. These observations are critical though,
particularly as with climate change driven changes, more freezes may occur in subtropical
estuaries just as more severe (strength, duration, frequency) storms are predicted [77,78].
These changes to storm events are also likely to increase the impact that they have on
phytoplankton communities with ecosystem-wide implications.
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Community Shifts

As with previous studies in Galveston Bay and other estuaries, we found that diversity
was variable between years, seasons, and storms (Figure 4), with values between 2.2 and
3.3 for the Shannon–Weiner diversity index, similar to those reported by Huang et al. [68]
and Pinckney et al. [4]. In addition, as with other estuarine studies, we also report that
storm events cause a decrease [16] and increase [79] in community diversity. These shifts in
cell diversity were found to be storm-dependent and likely due to shifts in the levels of
particulate matter and nutrient concentrations associated with storms.

Unlike previous studies in Galveston Bay that examined phytoplankton communities
throughout the entire bay system, we did not observe higher diversity in summer and fall
(e.g., [4,7]), in fact the opposite was observed. This is because primary productivity within
the bay is driven by nutrient (as nitrogen) pulsing events associated with riverine inputs,
while our sampling site for these studies was adjacent to the Gulf of Mexico, some 50 km
away from the major rivers that deliver nutrients into the bay.

In 2019, freshwater discharges associated with the storm triggered increases in di-
noflagellates and other flagellates (euglenophytes and cryptophytes) relative to other
groups (Figures 2–4), like that observed by Anglès et al. [15] for other Texas estuaries
impacted by storms. However, this was not the case after the 2016 and 2017 storms which
likely did not produce sufficient discharge to influence phytoplankton at the sampling
station and significant discharge respectively that resulted in hydrologic displacement of
the phytoplankton community (Figures 2–4).

5. Conclusions

Phytoplankton community studies utilizing automated IFCB image classification
allow for a deeper understanding of storm impacts than many other established methods
(Table S2). Until now, there are no analyses of multiple pulse disturbance events using
an IFCB. The strength of the IFCB as a community analysis tool is that it can be used to
examine species or genera level dynamics on a finer scale and over a longer time frame, as
well as pulse disturbance events. The results of this study complement other examinations
of extreme events which have found that relatively small tropical storms and hurricanes
(herein the 2016 Tax Day Flood and 2019 Tropical Storm Imelda) can lead to significant
increases in phytoplankton biomass (e.g., [14]), whilst large storms will flush phytoplankton
out of estuaries (herein 2017 Hurricane Harvey) [27,75]. Collectively, these studies reveal
that the phytoplankton response depends on both the characteristics of the storm and the
physical–chemical conditions of the estuary before its passage (Table S2) [18]. The major
limitation of the present study is that we had only one sampling station. This means we
may have missed any “hot spots” for trophic transfer and/or biogeochemical dynamics as
reported elsewhere (e.g., [14]). However, the daily sampling in this one location provided a
deeper understanding of how the community structure was being altered by each of these
storms. Ongoing studies are needed to capture both features and details to fully understand
the impact of perturbations from extreme weather events on estuarine ecosystems.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/environments11100218/s1, Table S1: Class list used in
Random Forest classifier, separated by higher taxonomic group with information about distribu-
tion and formation; Table S2: Summary of the phytoplankton response which was dependent on
both the characteristics of the storm and the physical–chemical conditions of the estuary before its
passage, and afterwards.
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