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Abstract
Characterizing marine phytoplankton community variability is crucial to designing sampling strategies and

interpreting time series. Satellite remote sensing, microscopy sampling, and flow through imaging systems have
widely different resolutions: from weekly or monthly with microscopy sampling to daily when no cloud cover
or glint is present with polar-orbiting satellites, and hourly for autonomous imaging instruments. To improve
our understanding of data robustness against sampling resolution at different taxonomic levels, we analyze 2 yr
of data from an Imaging FlowCytobot with hourly resolution and resample it to daily, satellite-temporal, and
weekly microscopy sampling resolution. We show that weekly and satellite-temporal resolutions are sufficient
to resolve general community composition but that the randomness of satellite-temporal resolution can result
in overrepresenting or underrepresenting certain categories. While the yearly phytoplankton biomass bloom is
detected in late winter by all four resolutions, category-specific yearly blooms are generally consistent in timing
but often underestimated or missed by the weekly and satellite-temporal resolutions, introducing a bias in
year-to-year comparisons. A minimum of biweekly sampling, particularly during known bloom periods, would
lower the bias in such categories. Similarly, sampling time should be considered as daily variations are category-
specific. Overall, morning and low tide sampling tended to have higher biomass. We provide tables for
categories detected by the IFCB in Narragansett Bay with their major bloom characteristics and recorded daily
variability to inform future sampling designs. These results provide tools to interpret past and future time series,
including possible detection of specific taxonomic groups with targeted satellite algorithms.

Who is here? Phytoplankton are microscopic organisms
generally too small to be detected by the human eye, yet their
environmental importance has prompted a wide variety of
sampling techniques and the establishment of time series with
different resolutions over time. These methods include dis-
crete light microscopy, satellite remote sensing, and particle
imaging, each complementing each other through their own
strengths and limitations, and with resolutions that may be
detailed enough for some species, but not for others.

Historically, one of the most common approaches was discrete
weekly or monthly sampling at ocean time-series sites
(e.g., Hawaiian Ocean Time Series, Bermuda Atlantic Time
Series, Narragansett Bay Plankton Survey [NBPTS]). For exam-
ple, the Hawaiian Ocean Time Series has highlighted primary
production changes coupled with climate oscillations associ-
ated with shifts in plankton assemblage composition (Corno
et al. 2007; Karl et al. 2021). Microscopic counts have also
allowed the identification of emblematic taxa for certain
regions and the monitoring of toxins and toxin-producing
phytoplankton (e.g., Belin et al. 2021). By increasing the tem-
poral sampling resolution, particle imaging instruments
(e.g., Imaging FlowCytobot [IFCB], Cytobuoy; Lombard
et al. 2019) deployed over the last couple of decades have
served as early warning systems in the detection of harmful
algae blooms (HABs) as well as understanding their environ-
mental forcings (Kraft et al. 2021; Kenitz et al. 2023; Carney
et al. in press) and forecasting them (Agarwal et al. 2023).
They have recorded multiyear blooms related to climatic vari-
ables (Campbell et al. 2017) and novel interactions
(e.g., temperature-dependant Guinardia delicatula and parasites
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infection; Peacock et al. 2014; Catlett et al. 2023). On larger
time and spatial scales, ocean color satellite remote sensing
time series have been used to characterize changes in phyto-
plankton bloom timing and size (Friedland et al. 2018), and
new algorithms can go beyond bulk biomass and retrieve a
small number of phytoplankton types and size classes (Mouw
et al. 2017), with increasing possibilities to detect more precise
groups with the expansion of hyperspectral remote sensing
(Wolanin et al. 2016; Vandermeulen et al. 2017) and the
launch of the new NASA PACE mission (Werdell et al. 2019).

While a coarse resolution might be sufficient to describe
large-scale processes, dynamic coastal regions require higher-
resolution sampling (Mouw et al. 2015). Daily sampling, for
instance, allows the retrieval of species succession in complex
spring blooms (He et al. 2022). Zhang et al. (2022) also used sim-
ulated time series of chlorophyll from MODIS with 2- to 30-d
resolution to show that responses of the phytoplankton blooms
to climatic factors in inland waters varied based on resolution.
This is also the case in coastal regions where the impact of tides,
resuspension, and river plume dispersion makes satellite hourly
observations suitable and desirable for monitoring surface pro-
cesses associated with biological activity (Mouw et al. 2015;
Arnone et al. 2017). In a coastal system, chlorophyll can vary on
an hourly timescale with tidal cycles, both during the day–night
and spring-neap tidal cycles (Blauw et al. 2012). The wide range
of available temporal scales opens the possibility of adapting
sampling strategies more closely to research questions, targeted
species, funding, or allocated people to the job.

In situ autonomous sampling instruments require careful
maintenance but provide very high data resolution (hourly),
making them suitable to capture dynamic subdaily processes.
Samples are collected as images, providing a permanent record
of raw data and allowing the possibility to go back, if needed, to
improve analysis and minimize phytoplankton counting errors
and taxonomic misidentification. However, the sample volume
is limited, and long chain-forming species can either be excluded
or broken up by built-in prefilters installed to prevent clogging,
generally around a 150 μm size. The large volume of collected
images also requires automated image analysis through machine
learning techniques (Orenstein et al. 2022). These can have a
high computational load (e.g., neural network/deep learning) or
need an extensive library of preidentified species to ensure accu-
racy (e.g., random forest). Species that are rare in the dataset can
be missed or misidentified. Light microscopy, although the
historical method, also presents some limitations as it is time-
consuming, often uses fixatives, and provides a lower time reso-
lution (weekly or monthly). Human factors, such as personnel
changes, fatigue, inexperience, and expert inconsistency, can
also affect the results (Culverhouse et al. 2003, 2014). This can
reduce the number of species considered to ensure consistency
across the dataset (Peperzak 2010). However, light microscopy
provides us with intricate morphological details from different
angles and is a trade-off between temporal resolution, taxonomi-
cal resolution, and available funding. Eventually, a third widely

used source of data is satellite imagery. Being freely available, sat-
ellite data covers the largest spatial scale and is most accessible,
but to the detriment of taxonomic details. Multispectral satellite
remote sensing has focused on global chlorophyll a and a few
phytoplankton types (Mouw et al. 2017). Algorithms and models
can also be specifically tuned to detect particular taxa that are
known to occur in a local area and have distinguishable optical
properties, such as Trichodesmium sp. (McKinna 2015) or Karenia
brevis (Soto et al. 2015). Determining specific phytoplankton spe-
cies from hyperspectral optical data is complex, but some studies
have shown that hyperspectral optics can allow retrieval of
20 different phytoplankton species (Zhu et al. 2019), and by pro-
viding global hyperspectral data, the NASA PACE mission will
enhance the possibility to monitor phytoplankton diversity from
space (Cetini�c et al. 2024). The obtention of data is also tightly
linked to the satellites orbiting time and the absence of cloud
cover and glint, providing a less regular sampling than light
microscopy or imaging. Polar-orbiting satellites generally provide
data every 2–3 d in the absence of clouds and products are often
aggregated on a weekly or monthly scale. Coastal products also
tend to have a sparser temporal resolution due to the additional
of optical complexity of the in-water constituents, land adja-
cency effects, the potential for more complex atmospheric cor-
rection needs, and the possibility of uncertainty from bottom
reflectance.

It is thus important to understand how the resolution of
these different sampling strategies impacts the retrieval
of phytoplankton dynamics at different taxonomic precisions
to interpret past and future time series and design well-adapted
sampling protocols. Here, we resample a 2-yr hourly time series
from an IFCB deployed in Narragansett Bay, Rhode Island
(USA) to a daily, satellite, and weekly microscopy resolution. By
comparing the community composition from broad groups to
categories, as well as the characteristics of the main phytoplank-
ton bloom and the category-specific blooms across temporal res-
olutions, we aim to highlight which sampling patterns require
a careful interpretation and which research questions might
gain from a higher temporal sampling resolution, throughout
or at specific times of the year, or when a lower temporal resolu-
tion may be sufficient.

Materials and procedures
Data acquisition

The IFCB is a phytoplankton imager that uses the principle
of flow cytometry to orient cells in a stream and image them
one by one (Olson and Sosik 2007). At the University of
Rhode Island, Graduate School of Oceanography (GSO) pier
(2 m depth, 41.6220, �71.3527), the IFCB is located inside a
pumphouse where seawater is continuously provided at a rate
of 10 L min�1 with a diaphragm pump. A 400 μm cartridge fil-
ter was installed in-line to remove any large particulates such
as macro-algae. The IFCB intake is also fitted with a 150 μm fil-
ter to prevent clogging of the internal fluidics of the
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instrument. Approximately every 20 min, the IFCB takes a
� 5 mL sample from the water flow, and imaging is triggered
by chlorophyll fluorescence for particles in a size range of
� 5–150 μm. The volume analyzed is recorded by the instru-
ment and varies depending on the volume of particles. It is
used to calculate the biovolume concentration during data
processing. Samples for this analysis were recorded between
09 November 2017 and 01 November 2019, and visually qual-
ity controlled for bubbles or blurry samples. This quality con-
trol was done manually, using the ifcb-annotate software
(https://ifcb-annotate.whoi.edu) to visualize a subset of images
for 10 samples at a time and identify problematic ones. This
amounts to 552 sampling days, including 26,440 samples with
104,505,923 images. The dataset is hosted at https://ifcb-
dashboard.gso.uri.edu/timeline?dataset=GSO_Dock. IFCB data
are processed with open-source workflows and scripts available
on GitHub (https://github.com/hsosik/ifcb-analysis/wiki; Sosik
and Olson 2007; Sosik et al. 2016). The ifcb-analysis MATLAB
(The MathWorks Inc. 2022) package processes the images into
244 features that serve as input to a classification algorithm.
For training purposes, 57,924 images from our dataset were
manually identified into 83 categories using a combination of
ifcb-annotate and EcoTaxa (Picheral et al. 2017) tools. Some
categories with the same genus or morphology were grouped
to obtain enough images for both training and validation and
70 categories, each with more than 50 images, were included
in the identification algorithm. Each category’s taxonomic
broad group (� class) and subgroup (� order) were retrieved
from the World Register of Marine Species (https://www.
marinespecies.org/). Between 50 and 300 images per category
were used to train a random forest algorithm with 100 trees
(Breiman 2001). When applied to unknown images, the ran-
dom forest algorithm assigns a probability that the image
belongs to each category; the category with the highest proba-
bility is retained unless the probability is too low and the
image is labeled as “unclassified.” All images labeled “unclassi-
fied” (� 23%) or falling into non-planktonic category
(e.g., detritus, bubbles) were removed for this analysis. We
evaluated the classifier’s performance for each category by cal-
culating the F1-score on the validation set, that is, manually
annotated images not used for training (Table 1). The F1-score
summarizes the precision and recall of the algorithm into a
single metric from 0 to 1, 1 indicating a better performance of
the algorithm (see Orenstein et al. 2022). For the considered
classified images, the average F1-score is 0.91, ranging from
0.73 (Odontella aurita) to 0.99 (Odontella mobiliensis).

To duplicate satellite-temporal and weekly microscopy time
series, we resampled our IFCB time series to match local
dataset resolutions (Fig. 1). The NBPTS is one of the longest
phytoplankton time series, with data collected in the bay since
1959, generally on Mondays, with some punctual variations
based on weather, making it a weekly time series. We down-
loaded the sampling dates from the weekly NBPTS (https://
web.uri.edu/gso/research/plankton/) as well as the Sentinel-3

Ocean and Land Color Instrument (OLCI) images
corresponding to our time frame from the NASA Ocean Color
website (https://oceancolor.gsfc.nasa.gov). To build the coastal
satellite-temporal resolution, given the adjacency of land to
the pier, we created a 3 � 4 seaward pixel area off the GSO pier
location on each image and set to null pixels in this area with
flags for land (LAND), probable cloud or ice contamination
(CLDICE), product failure (PRODFAIL), or probable stray light
contamination (STRAYLIGHT). For the resampling, we only
included dates for which at least one pixel within these
12 pixels had a valid chlorophyll value. These two time series
(NBPTS and OLCI) were used as filters over the IFCB time
series to generate realistic lower-resolutions time series.

Data processing and analysis
Time series were created by using the biovolume calculated

for each IFCB image with the method of Moberg and Sosik
(2012). For each IFCB category, we summed the biovolume
over the hour and divided it by the total volume sampled to
obtain biovolume concentration in μm3 mL�1. Biovolume was
chosen instead of image counts to both measure biomass and
better represent the contribution of long chains, which would
normally be counted as a single image. Data were linearly
interpolated when fewer than 3 h were missing to account for
the weekly cleaning and calibration of optical instruments
deployed alongside the IFCB. To mitigate the effect of missing
data from the IFCB, average biovolume concentration per day
was taken for the daily, satellite-temporal, and weekly NBPTS
resolutions (Fig. 2). This procedure was used to retrieve both
total sample biomass and categories sample biomass. When
retrieving total sample biomass, non-phytoplankton classes
(zooplankton and ciliates) were removed (� 6.2% of the
biovolume concentration). A moving weighted average of 9 h
was also applied to smooth the time series without removing
the tidal cycle and to focus on consistent signals by mitigating
the effect of possible single-hour outliers.

To characterize the general community at the four tempo-
ral resolutions, we looked at the community composition at
several taxonomic levels, along with the timing of the major
yearly blooms over the 2 yr. To assess the ability of each sam-
pling regime to detect similar community composition, we
compared results grouped into three taxonomic precisions:
(1) a broad group level, grouping categories by Class; (2) the
subgroup level, combining categories by Order; and (3) the
categories level from the IFCB classification (Table 1). The cat-
egory level was further divided into seasons to show the sea-
sonal influence on the resolutions: December/January/
February as winter, March/April/May as spring, June/July/
August as summer, and September/October/November as fall.
We ran Pearson’s chi-squared tests to compare the community
composition with the null hypothesis being that there are no
significant differences among the different resolutions at α of
5%. At the category level, individual categories that make up
more than 3.5% of the biomass were considered separately,
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Table 1. Taxonomic precision and F1 score for the 26 categories used in the category-specific bloom analysis.

Broad group Subgroup Category F1 score

Ciliates Other ciliates Mesodinium sp. 0.91

Diatoms Bacillariophycidae Cylindrotheca sp. 0.95

Diatoms Bacillariophycidae Pseudo-nitzschia spp. 0.89

Diatoms Biddulphianae Cerataulina pelagica 0.92

Diatoms Biddulphianae Eucampia sp. 0.93

Diatoms Biddulphianae Odontella aurita 0.73

Diatoms Biddulphianae Odontella mobiliensis 0.99

Diatoms Chaetocerotanae Chaetoceros spp. chain 0.84

Diatoms Chaetocerotanae Chaetoceros spp. single 0.88

Diatoms Fragilariophycidae Asterionella glacialis 0.81

Diatoms Fragilariophycidae Licmophora sp. 0.95

Diatoms Fragilariophycidae Striatella unipunctata 0.98

Diatoms Fragilariophycidae Thalassionema sp. 0.98

Diatoms Other centric Leptocylindrus minimus 0.82

Diatoms Rhizosoleniales Dactyliosolen blavyanus 0.98

Diatoms Rhizosoleniales Guinardia sp. 0.88

Diatoms Rhizosoleniales Rhizosolenia spp. 0.85

Diatoms Thalassiosirales Skeletonema spp. 0.92

Diatoms Thalassiosirales Thalassiosira spp. 0.93

Dinoflagellates Ceratiaceae Tripos spp. 0.98

Dinoflagellates Dinophysiales Dinophysis sp. 0.93

Dinoflagellates Gymnodiniales Akashiwo sanguinea 0.98

Dinoflagellates Gymnodiniales Margalefidinium polykrikoides 0.98

Nanophytoplankton Nanophytoplankton Nanophytoplankton 0.89

Others Dinobryon sp. 0.98

Silicoflagellates Silicoflagellates 0.96

Fig. 1. Schematic of the construction and analysis of the four time series. Starting with the Imaging FlowCytobot hourly and daily averaged biomass
time series, weekly Narragansett Bay Plankton Survey microscopy sampling days and OLCI satellite days with at least one chlorophyll value are used as fil-
ters. The differences in community composition, phytoplankton blooms and category-specific blooms and daily variability are assessed using these four
time series.
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and those with less biomass were grouped as “others” during
Pearson’s chi-squared test.

To compare the timing of the major yearly bloom in the
total biomass time series, we defined the main bloom as
the peak with the maximum biomass within a year. For sim-
plification in notation, we labeled the dates from 09 November
2017 to 31 October 2018 as year 1 and the dates from
01 November 2018 to 01 November 2019 as year 2. For each
of the four sampling resolutions, we defined the bloom
threshold as the median biomass over the time series plus 5%
to determine bloom timing (Siegel et al. 2002). The major
peak start and end date would be detected when the biomass
crosses that threshold. To mitigate instrument and daily vari-
ability, we allow up to 72 h to be missing and 12 consecutive
hours below the threshold within the peak. To detect the
major bloom for each individual IFCB category, a similar
bloom threshold was defined but using the mean plus 5% at
each of the four time series resolutions, a large number of
zeros when considering one category at a time often driving
the median to 0.

When considering the total biomass, in addition to the
largest bloom of the year, smaller blooms were detected at
each of the four sampling resolutions by applying the same
median plus 5% threshold. To qualify as a small bloom, values
had to stay above the threshold during that time. At daily and
hourly resolutions, two peaks are considered different if they
are more than 3 d apart. The satellite resolution is 5 d on aver-
age, so we allow for up to five missing days and consider two
peaks as distinct events if they are more than 5 d apart. For
the weekly NBPTS resolution, one value is enough to make a
peak, and two peaks are different events if they are more than
10 d apart. This means that the satellite-temporal and weekly
NBPTS resolutions may have peaks of 1-d length because only
one value was above the threshold. However, the actual
length is unknown and could be up to 13 d (6 d before and
6 d after).

Manually collected time series are often carried out at the
same time each week, as in the case of the NBPTS. Satellite
datasets are, by nature, restricted to daytime hours. However,
many phytoplankton have diel cycles, which may or may not
coincide with these sampling regimes. To assess the potential
impact of sampling time-of-day on results, we assessed vari-
ability in each category over diel and tidal cycles utilizing the
high-resolution IFCB time series. We characterized each cat-
egory’s overall daily variability as the average ratio between
the maximum and minimum values over the day, only con-
sidering samples where the given category is detected. To
assess daily cycles, we averaged biomass for each hour of the
day for a given category. Category biomass was also averaged
over each tidal cycle, starting a new cycle at the maximum
height within a 12-h period.

All analyses were done in R (R Core Team 2022), using the
packages tidyverse (Wickham 2017) and lubridate (Grolemund
and Wickham 2011) for data manipulation, castr (https://
github.com/jiho/castr) for smoothing, and ggplot2
(Wickham 2016) and cowplot (Wilke 2020) for plotting. Some
figures were also inspired by the ggstatsplot package
(Patil 2021). All codes are available on GitHub at https://
github.com/VirginieSonnet/planktonResolution.

Assessment
When considering all the plankton categories detected, the

richness follows the species rarefaction theory, meaning that
the more you sample, the more categories you detect
(Cermeño et al. 2014). All 70 image categories are detected
throughout the 2-yr time series at daily and hourly resolu-
tions. Most are also detected at satellite-temporal and weekly
NBPTS resolutions when considering the 2 yr together, with
the exception of a couple of zooplankton categories (Rotifera,
Arthropoda), which are, by instrument design, already very
low since most are filtered out to prevent instrument clogging.

Fig. 2. Sampling days included in each of the four time resolutions, showing (a) a time series of data for each resolution, (b) the percentage of days with
data per resolution. The top row is the original IFCB hourly/daily time series (IFCB hourly/daily). The other two rows in black show the IFCB time series
resampled at the satellite-temporal (IFCB satellite) and weekly phytoplankton (IFCB NBPTS) sampling days. Rows in gray show the full OLCI (Satellite) and
plankton survey (NBPTS) data resolution for comparison.
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Community dynamics
Overall, community composition biomass was not signifi-

cantly different among the four sampling resolutions
(X2

Pearson = 3.01, p = 1; Fig. 3a) at the broad group level.
Across seasons, diatoms dominated, followed by
nanophytoplankton and dinoflagellates (Fig. 3a). When con-
sidering the time series as a whole, there were also no statisti-
cally significant differences in composition detected at the
subgroup (X2

Pearson = 6.02, p = 1; Fig. 3b) or category level
(X2

Pearson = 35.62, p = 0.84, data not shown). However, differ-
ences become apparent when the category level is separated
by season (Fig. 3c). Weekly NBPTS resolution remains

consistent enough to get a similar community daily and
hourly resolutions. In contrast, satellite sampling days are
more randomly spaced and lead to the most different commu-
nity from the other resolutions (Fig. 3c). The differences are
significant in summer (X2

Pearson = 50.9, p = 0.0036) due to the
absence of satellite sampling days during a short but very
important bloom of Margalefidinium polykrikoides in August
2018. Although differences in the fall are not significant
(X2

Pearson = 9.02, p = 0.44), we can notice that the satellite-
temporal resolution is slightly different here, too, with 57%
diatoms instead of 40% for the other resolutions. This overrep-
resentation of diatoms is explained by the fact that the

Fig. 3. Comparison of community composition across sampling resolutions. Each bar represents a different time resolution: the IFCB time series on an
hourly (Hourly) and daily (Daily) scale and the same time series resampled on days when the satellite had observations (Satellite) and when the weekly
phytoplankton sampling took place (NBPTS). The community composition is generally similar across sampling regimes at the three levels of taxonomic
precision: (a) broad group level, (b) subgroup level, (c) category level. The latter is further separated by season to show that under- or oversampling dur-
ing blooms at the satellite resolution can modify the general community composition repartition. At the category level, individual categories that make
up more than 3.5% of the biomass were considered separately and those with less biomass grouped as “others” during the analysis. For the purposes of
illustration, in (a) and (b), percentages for groups with more than 5% of the total the biomass are shown. For (c), percentages of categories containing
more than 10% of total biomass are shown.
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satellite sampling days spanned 16 d in September 2019 when
both a Skeletonema spp. and a Guinardia sp. bloom occurred
while the other fall months were comparatively undersampled
with 3–10 sampling days.

All four resolutions detect the main annual bloom in the
late winter for both years (Fig. 4). For the satellite-temporal
time series, the bloom in year 1 only encompasses two sam-
pling days, while year 2 has a higher resolution, highlighting
the importance of considering the sampling effort when com-
paring 2 yr as one bloom could be missed or underestimated.
Similarly, in year 2, the weekly NBPTS resolution underesti-
mates the magnitude of the peak by almost 50% compared to
the hourly maximum. Interestingly, the year 2 bloom has a
second bloom at the beginning of March with a slightly lower
magnitude (see Supporting Information Fig. S1), and the
weekly NBPTS sampling day occurs just a little after the height
of that peak, thus, if either of the February or March sampling
days had been one or 2 d off, the height of the peak could
have moved by 1 month. In terms of bloom phenology, the
lower resolution for the satellite and weekly sampling also
leads to smaller bloom length in year 1, respectively, 8 and
7 d, compared to 16 d for the hourly and daily resolution.
While the start date is mostly within 2 or 3 d, the end date
shows more variation for the satellite and weekly resolution,
ending a week before the hourly resolution and explaining
the smaller bloom length in year 1. During those 2 yr, the
bloom maximum also varies by no more than 5 d.

For smaller blooms throughout the year, the number of
peaks detected within the time series is similar for the weekly
NBPTS, satellite-temporal, and daily resolutions. At the hourly
resolution, 10 more peaks are detected (Fig. 5a). The NBPTS

and satellite resolution have several bloom lengths of 1 d due
to the presence of only one value above the threshold for
those peaks (Fig. 5b). At both daily and hourly resolution, we
can see that the means are just below 2 weeks, but the hourly
median is around 7 d: 50% of the hourly peaks detected are
less than 7 d and 30% are also less than 1 d. Many shorter
blooms, often category-specific blooms, may thus be detected
or not depending on when the sampling falls within a week
or even within the day.

Species dynamics
Category-specific major blooms are detected at the same

time of the year across resolutions but, depending on the cate-
gory can look different from year to year and among resolu-
tions. Categories such as Skeletonema spp. or Leptocylindrus
minimus with major blooms that last longer than 2 weeks are
generally well detected at all resolutions, but the bloom mag-
nitude can be underestimated at lower resolutions due to vari-
ability within the bloom (Fig. 6a,e). For instance, for
L. minimus, the satellite-temporal resolution misses both the
first and highest peaks of year 1 and only samples after
the height of the year 2 bloom, underestimating the magni-
tude of both years. Although the bloom is detected, for some
species, the underestimation can be amplified when the whole
height of the peak is missed. The weekly NBPTS and satellite-
temporal resolutions both miss the Dactyliosolen blavyanus
height of the peak in year 1, only resolving the beginning of
the bloom and largely underestimating the bloom magnitude
difference between the 2 yr (Fig. 6b). Similarly, the satellite-
temporal resolution misses the height of the Thalassiosira spp.
bloom in year 1 and the weekly NBPTS misses it in year

Fig. 4. Time series of the major bloom for each year. The major bloom is plotted with round dots of different colors for each resolution. The star-shaped
data point indicates the maximum detected at each resolution. Note that the maximum for the daily and satellite occurs at the same time both years and
thus the star-shaped maximums overlap. Only for visualization, the dark gray line shows the weighted moving average applied 30 times over a 7-h win-
dow to smooth the time series without increasing the moving window. The black dashed line is the 5% above the median limit to determine the bloom
start and end dates.
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2 (Fig. 6f). The satellite and weekly resolutions can also hap-
pen to sample within the bloom but on both edges of the
height of the bloom. This is the case for the Cerataulina
pelagica bloom in year 1 for both resolutions (Fig. 6c) and for
the year 1 Chaetoceros spp. single bloom at the satellite-
temporal resolution (Fig. 6g). Eventually, some categories have
a major bloom shorter than 7 d and bloomed both years
around the same time (e.g., Dinobryon sp.; Fig. 6h) or only dur-
ing one of the years (e.g., M. polykrikoides; Fig. 6d). These
short-bloom categories are especially hard for lower resolution
approaches to detect or not underestimate. The satellite-
temporal resolution neither resolves the M. polykrikoides year
1 bloom nor any of the Dinobryon sp. blooms, and while the
weekly NBPTS resolution samples the year 1 Dinobryon
sp. bloom at the height, it samples the year 2 bloom closer to
the bottom. A comparison of those 2 yr at the weekly resolu-
tion thus shows a higher year 1 bloom when the year 2 bloom
was twice as high.

The time of sampling for a time series in an estuary or a
bay can have a different level of importance depending on the
species and the strength of the daily or tidal cycle. Some spe-
cies can have a small ratio between the maximum and mini-
mum hourly biovolume concentration values during a day
and, as such, be relatively consistent in biovolume concentra-
tion throughout the day (e.g., Akashiwo sanguinea, Skeletonema
spp., ratio < 5) whereas others show a high (e.g., D. blavyanus,
Thalassiosira spp., 5 < ratio < 25) or very high variability
(e.g., Eucampia sp., Asterionella glacialis, ratio > 25) (Fig. 7a).
While most categories in the IFCB do not show a specific daily
cycle, certain categories seem to peak twice a day, in the
morning and in the late afternoon (e.g., Guinardia sp.) or at
midday and in the night (e.g., Chaetoceros sp. single), or only
during midday (e.g., A. sanguinea) (Fig. 7b). Similarly, most
categories have higher biovolume concentration around low

tide (e.g., L. minimus) or ebbtide (e.g., Eucampia sp.) although
some (e.g., A. glacialis) are slightly higher closer to high tide
(Fig. 7c). Although these are average cycles, they show that
time of sampling can be important, especially when targeting
a specific category. Summary figures with the time series,
major blooms, and daily variability for each category are
included in Supporting Information Materials.

Discussion
In this analysis, we evaluated the influence of different

temporal resolutions on the possibility of retrieving a specific
level of taxonomical phytoplankton information. Although
some periods of the IFCB time series are missing due to instru-
ment maintenance, we show that a weekly or a variable reso-
lution corresponding to a polar-orbiting satellite sampling is
enough to retrieve the general community composition down
to the category level. However, at the satellite-temporal resolu-
tion, differences occur based on seasonal-dependent coverage:
undersampling or oversampling of a very important bloom
can introduce deviations in the representation of the detected
general community composition. Interannual variability in
temporal coverage, with inconsistent sampling intervals due
to gaps, at satellite-temporal sampling resolutions are thus
important to consider when comparing changes in magnitude
in phytoplankton blooms across a time series. Sampling reso-
lution also impacts fine measures like start date, maximum, or
end date for the annual main phytoplankton bloom. In
regions where the major bloom occurs in winter or spring, sat-
ellite data can also have a very different resolution from 1 yr
to another due to missing data from cloud cover. Based on our
findings, we recommend using caution in interpreting phyto-
plankton phenology metrics derived from high-resolution sat-
ellite time series with gaps exceeding 1 week. A weekly

Fig. 5. Number and peak length of each resolution. (a) The number of peaks detected for each resolution and (b) Boxplot of peak length per resolution,
the red dot corresponds to the mean (u), while the center of the boxplot is the median. Each point represents a peak length. The horizontal dashed line
represents a bloom length of 7 d, corresponding to a weekly sampling regime. Blooms falling below this line have the potential to be missed by less fre-
quent sampling.
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resolution is sufficient to resolve the general annual cycle, but
when precisely comparing interannual bloom height, start
and end date, at least twice weekly, if not a higher temporal
resolution is advisable (Muller-Karger et al. 2018). Further phe-
nology analysis based on high-frequency time series that cover
decadal time frames, such as WHOI’s Martha’s Vineyard IFCB
time series, would expand our findings here and help refine
potential phenology errors due to sampling timescales.

Many peaks in biovolume concentration last less than
1 week and correspond to category-specific blooms; weekly
and polar-orbiting satellite-temporal resolution might miss
those short-lived phytoplankton blooms or might miss them
1 yr but not the other. In our location, major blooms of cate-
gories, including the HAB M. polykrikoides and the golden alga
Dinobryon sp., are missed by the coarser resolutions. On the
contrary, categories like L. minimus, Skeletonema costatum, and

single-cell Chaetoceros sp. have long enough major blooms to
be resolved by all sampling resolutions, but some of the sam-
pling timings lead to underestimation of the bloom magni-
tude. He et al. (2022) similarly showed that a major
phytoplankton bloom in the Qinhuangdao Coastal Area,
China, in summer is a succession of diatoms, Chaetoceros tor-
tissimus displaying short 3-d bloom, S. costatum a week-long
bloom, and Thalassiosira pacifica a 2-week-long bloom. These
indicate that when targeting a specific event or species, a
higher resolution, at least with twice weekly sampling, is nec-
essary to reduce the possibility of missing or underestimating
the bloom. In Narragansett Bay specifically, Thalassiosira spp.
is considered the major player of the winter–spring bloom and
important to local fisheries as it has been shown to provide
food to zooplankton and juvenile fish (Paul et al. 1990). The
strength of its bloom has been driving studies on temperature

Fig. 6. Major bloom peak for eight categories. Example categories with a major peak more than 1-week long well-resolved by all resolutions, (a)
Skeletonema spp. and (b) Leptocylindrus minimus; major peak underestimated by low sampling resolutions, (c) Dactyliosolen blavyanus, and (d)
Thalassiosira spp.; major peak missed due to sampling before and after, (e) Cerataulina pelagica and (f) Chaetoceros spp. single; major peak less than 7 d
missed by lower resolutions (g) Margalefidinium polykrikoides and (h) Dinobryon sp. Gray crosses are the hourly data for year 1, and gray circles are the
hourly data for year 2. A moving average curve is also shown for visualization, dashed for year 1 and solid for year 2. Daily (yellow), satellite-temporal
(blue), and weekly NBPTS (red) resolutions have the same color for both years.
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and light influence on the bloom timing and importance
(Hitchcock and Smayda 1977). Our analysis shows that if such
a comparison was to be run between years 1 and 2 with weekly
sampling, the bloom in year 2 would be considered 35% of the
one in year 1 when, in reality, it is only slightly lower (92% of
the year 1 bloom). However, a higher resolution also generally
requires the use of machine learning algorithms that can mis-
classify some images; one of the smaller L. minimus peaks in win-
ter, for instance, is part of a bigger Skeletonema spp. bloom. This
is balanced with the storage of images, which gives the possibil-
ity to confirm or update the signals observed at a later time and
regular manual reassessment as the dataset continues.

We summarize recommended sampling frequencies for catego-
ries shown in Table 1 to accurately capture both the timing and
magnitude of detected blooms (Fig. 8). Recommendations are
based on the total number of peaks detected in the time series
and the percentage of these blooms that are less than 1 week in
duration. With the design of our peak threshold (mean + 5%),
when the time series of a given category is dominated by one
important annual bloom, very few peaks are detected (left panel
in Fig. 8). In these cases, if fewer than 30% of total detected
blooms are less than 7 d in duration, then a weekly sampling
regime would most likely be enough to resolve the main features
of the time series for these categories. For categories with a higher
percentage of short-duration blooms, twice-weekly sampling,
especially during known bloom periods, is recommended.

Conversely, other categories have numerous peaks through-
out the year and are not dominated by a single bloom (middle
panel in Fig. 8). These categories are detected throughout the
IFCB time series without a consistent blooming period, and a
weekly sampling schedule would give a broad overview of
their dynamics. However, when more than 50% of the peaks
are less than 7 d, twice weekly sampling, particularly during
known bloom periods, would lead to a more accurate resolu-
tion. The category ceratiaceae is a special case as it includes a
small summer species that can be resolved with a weekly dis-
tribution and a large winter species that would require a high
sampling resolution to be detected. Our study highlights that
many phytoplankton categories peak throughout the year for
smaller durations beyond the main peak, which supports the
recommendations from Muller-Karger et al. (2018) for satellite
remote sensing sensors of not only higher spatial and spectral
resolution but also temporal resolutions of hours to days.

While our analysis combines hourly measurements through-
out an entire day into a single representation for weekly and sat-
ellite sampling regimes, actual data from such time series will be
derived from a single measurement. Previous analyses have
already shown that the tidal cycle needs to be accounted for in
correcting for quenching in satellite measurements of chloro-
phyll fluorometry in coastal areas due to the spatial non-
homogeneity between unquenched nighttime measurements
and quenched daytime measurements (Carberry et al. 2019).

Fig. 7. Daily variation of selected categories. (a) Boxplot of the maximum and minimum biovolume concentration ratio within a single day for six
selected categories. The ratio is calculated only considering samples during which the category was detected. (b) Average biomass per hour over the time
series for three selected species with different cycles: morning and late afternoon peaks, midday and night peaks, and midday peak. (c) Average biomass
per tidal hour over the time series for three selected species with different cycles: low tide peak, ebb tide peak, and high tide peak.
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Our analysis of the hourly IFCB time series demonstrates that
the choice of sampling time during the day can also impact the
retrieval of specific categories, as some present a higher daily var-
iability than others (Fig. 7). Overall, most species showed higher
biomass around the time of low tide and, to a smaller extent, in
the morning. Both the tidal cycle and the fixed sampling depth
may explain such a pattern. For positively buoyant organisms,
numbers would be higher at low tide when the fixed sampling

pipe is closer to the surface. Although such daily fluctuations
may vary throughout the seasons, the pattern found here in Nar-
ragansett Bay for A. sanguinea, for instance, is consistent with
the early afternoon increase also reported off the Southern Cali-
fornia Bight by Kenitz et al. (2023) and in the Ariake Sea by
(Katano et al. 2011). Drawing samples only at the surface or only
at a specific time each week might then introduce bias into the
dynamics of species like A. sanguinea, well-known for diel vertical

Fig. 8. Recommended sampling strategies for annual variations of categories in Table 1 based on the total number of peaks above the threshold and
the percentage of these blooms lasting less than 7 d. Categories are colored by the minimum resolution recommended to accurately capture bloom dura-
tion and magnitude and are grouped (vertical dashed lines) by observed bloom patterns. Category-specific graphs of major bloom pattern, number and
length of peaks detected can be found in the Supporting Information Material.

Table 2. Recommended sampling resolution depending on the bloom pattern and general length of the blooms (< 7 d = short,
> 7 d = long). An example of a category that would benefit from such sampling resolution is indicated in italic. A more detailed table
for each category mentioned in this study can be found in the Supporting Information Material (Supporting Information Table S1).

Bloom pattern

Bloom length

Short Long

Detections Biweekly if targeted species

Striatella unipunctata

Weekly

Asterionella glacialis

Multiyearly bloom Biweekly

Chaetoceros sp. chain

Weekly

Guinardia sp.

Yearly bloom with small detections Biweekly during bloom period

Dactyliosolen blavyanus

Weekly

Eucampia sp.

Yearly bloom Weekly for bloom detection (except Margalefidinium polykrikoides)

Biweekly during bloom period for bloom comparison

Cerataulina pelagica
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migration (Katano et al. 2011). In addition to diel or tidal cycles,
some blooms present a high spatial patchiness and hourly data
are crucial for early warning detection systems, especially for
important HAB species known for producing toxins such as
K. brevis (Campbell et al. 2017) or M. polykrikoides (Carney et al.,
in press). Some of the variation observed here may be induced
by instrument variability and possible maintenance issues, but
the average daily and tidal cycles indicate that when targeting a
specific category, sampling time should also be considered.

We compiled our findings into a summary table highlight-
ing ideal sampling resolution depending on bloom pattern
and general bloom length (Table 2). We also expand this table
and provide, in the Supporting Information Material, a
table that includes the bloom characteristic and daily pattern
over the 2 yr for each category retrieved by our IFCB
(Supporting Information Table S1). These patterns were
recorded at a specific coastal location but can serve as indica-
tor and baseline to help inform sampling design depending
on the taxonomical and temporal resolution targeted, and
help interpret both in situ and satellite data, past and future.
New algorithms and improved hyperspectral satellite capabili-
ties should help us monitor phytoplankton community
changes that may be important for the food web but might
not influence the total biomass. Although the summary table
we provide represents one coastal location, it gives a general
idea into the sampling resolution and sampling periods desir-
able for important diatoms and dinoflagellates species.

Comments and recommendations
We showed that weekly and satellite-temporal resolutions

are sufficient to resolve general community composition but
that the randomness of the satellite-temporal resolution can
result in overrepresenting or underrepresenting certain classes.
It is thus important to consider temporal satellite resolution
when comparing year-to-year phytoplankton blooms. While
the daily and hourly resolutions are the only ones capturing
the whole variability of the time series, satellite-temporal and
weekly resolutions can give a general idea of bloom timing
and dynamics, especially for species with long-lasting blooms.
On the other hand, when targeting specific species or compar-
ing fine-scale bloom phenology metrics from 1 yr to another,
we recommend using at least a twice weekly sampling resolu-
tion during known bloom periods and again, taking into
account sampling resolutions in the interpretation of observed
dynamics. The detailed species dynamics presented here are
specific to the Narragansett Bay area. They may, such as for
A. sanguinea, hold true in other regions but may also be used
as a starting point and further enriched with similar area-
specific analysis.

Data availability statement
Raw IFCB data for the GSO Dock are available at https://

ifcb-dashboard.gso.uri.edu/timeline?dataset=GSO_Dock. R scripts

associated with the data processing and data analysis are
stored on Github at https://github.com/VirginieSonnet/
planktonResolution.
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