
1. Introduction
The carbon cycle is one of the most important chemical cycles in the Earth system, with much of it taking place 
in the marine environment. An important contribution to this cycle is given by the ocean's biological carbon pump 
(hereafter BCP; Volk & Hoffert, 2013). The BCP works by transferring organic carbon fixed via photosynthesis 
from the upper ocean to the deep interior, often in the form of sinking particles, or particulate organic carbon 
(POC). This biota-driven “pump” mechanism starts with only a small proportion of primary production (PP) 
leaving the epipelagic zone (upper 100–200 m) as POC. After this export of POC, an even smaller quantity of 
organic material survives the mesopelagic environment (200–1,000 m) and reaches the very deep ocean, where it 
can remain for hundreds of years. The fraction of the export flux entering the deep ocean (here considered to be 
ocean region below 1,000 m depth) is quantified by the transfer efficiency (TE). Several factors affect the transfer 
efficiency, each of them varying seasonally and regionally. Key among these factors are both remineralization 
and sinking of dead organic material, which is in turn related to other components such as plankton community 
structure (Bach et al., 2019; Ikenoue et al., 2019), heterotrophic organisms (Zakem & Levine, 2019) and biogenic 
minerals (Armstrong et al., 2001; Klaas & Archer, 2002), as well as to temperature and oxygen distributions 
(Cavan et al., 2017). Combined, the remineralization and sinking effects dictate how the POC flux is attenuated 
throughout the mesopelagic ocean.

Despite the well-known seasonal and regional influences of the aforementioned mechanisms on remineralization 
and sinking, these are widely assumed as constant in time and space. This is partly motivated by earlier studies 
such as Martin et al. (1987), which proposed simple parameterizations (see also Methods) for the flux and at-
tenuation of organic matter in the open ocean, which has since been widely used both by observationalists and 
modelers in the field. Over the years, however, the hypothesis of a constant and spatially uniform remineralization 
profile has been challenged, based on observed temporal and regional variability tendencies in the flux attenua-
tion profile (Buesseler & Boyd, 2009; Francois et al., 2002).

Evidence of variability in the flux attenuation emerged from sediment-trap samples collected over the last few 
decades. A series of such sediment-trap observations (Berelson, 2001; Buesseler et al., 2007; Conte et al., 2001; 
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Francois et al., 2002; Lutz et al., 2002) showed a flux attenuation parameter (estimated from Equation 1 in Meth-
ods) varying spatially from 0.5 to 2.0 around the globe (as per Kwon et al., 2009, compiled from the references 
above). This variability is important because changes in the flux attenuation can have a significant impact on the 
distribution of nutrients in the global ocean and on the carbon cycle. This was evidenced in a study by Yamanaka 
and Tajika (1996), as they showed that varying the flux attenuation parameter (as per Equation 1 in Methods) 
globally from 0.9 to 2.0 led to an atmospheric partial pressure of carbon dioxide (CO2) change of about 100 ppm. 
Later, Kwon et al. (2009) showed that even smaller variations in the remineralization profile can change substan-
tially the global distribution of nutrients.

In the context of POC and nutrient fluxes, variations in the flux attenuation can be linked to a variation in TE (and 
vice versa)—for instance through Equations 1 and 2 shown in Methods. In some cases, TE is used preferentially 
to the flux attenuation, as it requires fewer assumptions and is less sensitive to the choice of reference depth and 
shape of profile. However, for situations where there are observations of the POC flux at more than 2 depths, then 
a flux attenuation parameter frequently used. For this purpose, some studies may use an exponential or a power 
law such as Equation 1 in Methods.

Since evidence of variability in the flux attenuation emerged, the case for spatial variability has received the most 
attention. In terms of global spatial patterns in attenuation and TE, Henson et al. (2012) found that TE is high 
at low latitudes and low at high latitudes, while the flux attenuation (as per Equation 2 in Methods) is high at 
high latitudes and low at low latitudes, a result that aligns with later works from Guidi et al. (2015) and Mouw 
et al. (2016). Contradictory to that, Marsay et al. (2015) presented data from North Atlantic and North Pacific 
which show that the spatial variability in the flux profiles can be largely explained by temperature, with warmer 
waters, typically in lower latitudes, being correlated with the shallowest remineralization, meaning higher values 
of the flux attenuation parameter and lower TE (see Equation 2). Weber et al. (2016) used diagnostics from a 
data-constrained ocean circulation model to obtain deep ocean particle flux profiles, from which they found a 
global pattern of TE to 1,000 m that is higher at high latitudes than in subtropical gyres, and assumes intermediate 
values in the tropics—a result that agrees with the aforementioned work of Marsay et al. (2015).

Several studies have also found a substantial seasonal variability in export and TE, as well as in the average 
sinking speed of POC, which is widely accepted as one of the key contributors to both TE and flux attenuation 
(Middelburg, 2019; Weber et al., 2016)—see also Equation 3. When exploring how the BCP efficiency is related 
to global-scale environmental parameters and the seasonality of net PP, Lutz et al. (2007) found a seasonal pat-
tern of export flux, with the sinking fraction of net PP during intervals of bloom production being typically half 
that of other seasons. A strong seasonal variability in the average sinking velocity of particles was also found 
in a North Atlantic-based study by Villa-Alfageme et al. (2016), possibly related to changes in the epipelagic 
community structure in that location. In relation to seasonality in transfer to depth, although the seasonality in 
deep ocean fluxes is well studied (e.g., Hartman et al., 2012; Muller-Karger et al., 2019; Smith et al., 2018, all 
showing a high seasonality in deep POC fluxes), the export flux is not often seasonally resolved, and therefore 
seasonal variability in TE is poorly known. The few exceptions include: both HOT (University of Hawaii, 2021) 
and BATS (Conte et al., 2019) stations, where monthly ship-board sampling has been done; the PAP station (Bol 
et al., 2018), where autonomous vehicles have been deployed for a 1-year period; and parts of the Norwegian 
Sea (Dall’Olmo & Mork, 2014) and the Subtropical Atlantic (Estapa et al., 2019), where autonomous platforms 
such as Bio-Argo floats have been used. In particular, recent work by Bol et al. (2018) presented a full-year data 
set of backscatter-derived POC data measured by seagliders in the North Atlantic PAP site, at daily resolution, 
showing that the POC export to the mesopelagic zone displays a strong seasonality with deepest remineralization 
occurring during winter and shallowest during late spring and summer.

Despite evidence that it exists, we still lack an understanding of the impact of seasonal variability in TE. To 
exemplify that, an important question that remains unanswered is what is the impact of seasonal variation in the 
flux attenuation and sinking speed when these lead or lag the well-known seasonal variability in surface primary 
production. This is important since, for instance, periods of low sinking speed coinciding with the spring bloom 
might result in a less efficient POC transfer to depth on an annual timescale than if the maximum sinking speed 
(or weakest attenuation) occurred during the bloom. This lack of understanding is in spite of the phenomenon 
often being present in models, as many of them simulate POC explicitly. This means that POC is represented as 
a tracer that is dependent on other dynamically resolved tracers such as phytoplankton, zooplankton and nutrient 
distribution (see for instance Equation 27 in Kriest et al., 2010). This implies a time variability in the detritus 
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profiles and leads to a seasonal variation in the diagnosed fluxes (given by the sinking speed times the detritus 
concentration) and consequently in TE as well.

An obstacle to tackling this topic is that most measurements of flux attenuation profiles are made from sinking 
particle flux observations taken at specific points in time. These are usually in spring and summer, such that we 
currently lack a clear picture of the full seasonal cycle in the flux attenuation and its relation to the seasonal cycle 
in surface primary production. Here we address this by testing how seasonal variability in both flux attenuation 
and sinking speed in a model that represents detritus explicitly can impact global POC fluxes and nutrient distri-
butions, and we do this by using a global biogeochemical model modified to incorporate simplified representa-
tions of seasonally varying flux attenuation parameter and sinking speed that allow us to explore the possible 
range of seasonal variability.

To the best of our knowledge, this is the first work that explicitly looks at the consequences of seasonally varying 
flux attenuation for both export and transfer of POC to depth, as well as its impact on the distribution of nutrients 
in the ocean. In this study, this is done by comparing results obtained using constant and uniform flux attenuation 
and sinking speed to those found using different seasonality patterns which vary both in strength and phase. The 
latter is taken into account by varying the phase of the seasonal variation in the flux attenuation with respect to 
phytoplankton growth and solar radiation (see Methods for details).

This paper is divided as follows. In Section 2 we present the model used, as well as the parameters and variables 
that are relevant to the study. The set of experiments to be performed are also presented and discussed in this 
section. Results for nutrient distributions, primary production, POC export and transfer to depth are presented in 
Section 3. These results are discussed in Section 4 in the light of the influence of seasonality on the BCP. Con-
clusions and further directions are provided in Section 5.

2. Methods
The influence of remineralization on the POC transfer to depth is often estimated through a power law curve, 
as proposed by Martin et al. (1987), equating the POC flux F(z) at depth z with the POC flux 𝐴𝐴 𝐴𝐴𝑧𝑧0

 at depth z0 < z 
which corresponds to the reference level for export (e.g., bottom of the epipelagic zone). It reads as

𝐹𝐹 (𝑧𝑧) = 𝐹𝐹𝑧𝑧0

(

𝑧𝑧

𝑧𝑧0

)−𝑏𝑏

 (1)

where b is the flux attenuation exponent (often referred to as the “Martin b parameter”), which depends on the 
balance between POC sinking speed and rate of remineralization (Middelburg, 2019). In fact, ignoring the effects 
of circulation on POC, if we assume a sinking velocity that increases linearly with depth of the form w(z) = az, 
with a > 0 constant, and a constant decay rate λ > 0, then Equation 1 is obtained as an exact annually averaged 
steady state solution for an advection-reaction equation, with b = λ/a (see also Equation 3 in Methods). Note that 
using Equation 1,

TE =
𝐹𝐹 (𝑧𝑧 = 1, 000m)

𝐹𝐹𝑧𝑧0

=

(

𝑧𝑧 = 1, 000m

𝑧𝑧0

)−𝑏𝑏

. (2)

In Martin's original work, for the parameter b the limited observations in the Pacific Ocean suggested a value of 
0.858 as the best fit—with the caveat that the trap data from coastal sites reported in the same study were not used 
to calculate the exponent and did not fit this value. Since then, this parameterization has been widely adopted and 
is an integral part of many global biogeochemical models, particularly those that do not model detritus explicitly 
(Kriest & Oschlies, 2008). For those models that do represent detritus explicitly, this constant Martin b = 0.858 
is usually used to specify the sinking speed rate a through the aforementioned equation b = λ/a (see for instance 
Kriest & Oschlies, 2015) as this model-imposed b equals the diagnosed b by Equation 1 for a model with a = λ/b 
in the absence of circulation effects (see also Section 2.1).

In this work, our approach consists of adding seasonal variability to the flux attenuation parameter b—here 
denoted by bmodel to distinguish from the b that is diagnosed from Equation 1—in the numerical ocean-biogeo-
chemical model described in Section 2.1. This seasonality (see Section 2.2) is varied in both strength and phase 
relative to solar radiation, and the resulting effects are compared to those observed in the case of a constant bmodel 
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as explained in Section 2.3. The metrics used and their underlying assumptions are presented in Section 2.4. All 
spatial plots shown in this manuscript uses the colormap package developed by Thyng et al. (2016).

2.1. Model

This section provides a brief description of the modeling framework used. In order to run several experiments 
covering a wide range of parameter values, we use the Transport-Matrix Method (TMM; Khatiwala, 2007; Kha-
tiwala et al., 2005). This is a fast, efficient, seasonally varying, offline representation of the ocean circulation 
derived from a global circulation model, which is freely available online (see Khatiwala, 2018). Here, 12 monthly 
averaged transport matrices computed by Khatiwala et al. (2005) from the MIT Global Circulation Model are 
used to recreate the annual circulation. The configuration used is global, has 15 vertical layers and 2.8° spatial 
resolution. For more on the TMM, the reader is encouraged to see Khatiwala et al. (2005), and Khatiwala (2007); 
Khatiwala (2018).

For the biogeochemistry, we use the GEOMAR NPZD-DOP Biogeochemical Model (Kriest & Oschlies, 2011; 
Kriest et al., 2010, 2012). This model is based on the production, export and remineralization of organic phos-
phorus, with phosphate (PO4, given in in mmol P m−3) as a nutrient, which for this study is converted into carbon 
using the Redfield ratio C:N:P = 106:16:1. In this model, the remineralization of organic matter is represent-
ed by the decay of detritus (in mmol P m−3), which is treated explicitly as a tracer (see Equation 27 in Kriest 
et al., 2010). This detritus is generated by dying and eaten phytoplankton and sinks with speed w (in day−1 m−1)—
which in turn is assumed to increase linearly with depth such that w = az (a > 0)—while decaying at specific 
remineralization rate λ (taken to be 0.05 day−1).

The crucial point here is that the explicit treatment of the detritus dynamics effectively imposes a power law curve 
on the flux profile, which in the absence of circulation, converges to the annually averaged steady state profile 
given by Equation 1 with b = λ/a as before. This deterministic relation allows one to specify a priori a value to b, 
and in this way impose time variability on the sinking speed via

𝑎𝑎 =
𝜆𝜆

𝑏𝑏
. (3)

Although Equation 3 has been widely used in models that represents detritus explicitly (for example Kriest & 
Oschlies, 2015), this relation between the constant exponent b in Equation 1 and the model-imposed constant 
sinking speed rate a is only true in the absence of circulation. When circulation is present, the value of b imposed 
by Equation 3 and the value of b that is inferred via Equation 1 do not match. For this reason, we shall rename the 
parameter b present in the model as bmodel.

In this model, a is determined by the already specified λ = 0.05 day−1 and a reference value for bmodel given by 
𝐴𝐴 𝐴𝐴

model
= 𝐴𝐴

model

𝑟𝑟𝑟𝑟𝑟𝑟
= 1.388 (both values coming from Kriest, 2017). This gives a value of approximately 0.036 day−1 

for a. When compared to the World Ocean Atlas 2018 climatology (Garcia et al., 2018), a value of 𝐴𝐴 𝐴𝐴
model

𝑟𝑟𝑟𝑟𝑟𝑟
= 1.388 

gives a better agreement to PO4 distributions than the Martin value of 0.858 (Martin et al., 1987) as indicated in 
Figure 2 we should note that this model is phosphate-based, while the Martin et al. (1987) b = 0.858 value was 
obtained for carbon, and that there is evidence that the attenuation profiles for both might differ in certain regions 
of the ocean (see e.g., Figure 2 of Engel et al., 2017). The fidelity of the calibrated model to observations is not 
so relevant to this study, since the model is being used to explore behavior rather than to precisely match observa-
tions. A complete description of the NPZD-DOP model can be found at Kriest et al. (2010); Kriest et al. (2012), 
Kriest and Oschlies (2011) and includes details on how the computation of the depth z for the sinking speed is 
numerically handled at each vertical grid box to prevent overestimation of fluxes (Kriest & Oschlies, 2011).

Finally, it is important to note again that if modeled fluxes are used to diagnose b via Equation 1, and conse-
quently TE, then the results are emerging properties of the coupled ocean-biogeochemical model and cannot be 
determined by the imposed form of bmodel solely. Therefore, the “emergent” b from Equation 1 cannot be imposed, 
since the POC dynamics is influenced by the background ocean circulation. Equation 3 summarizes only the 
contribution of the biogeochemical module to the POC sinking under the hypothesis of constant a, λ and b and 
does not account for the physical circulation. In other words, bmodel ≠ b in general. This fact is largely neglected 
in current literature and we discuss its consequences in Sections 3 and 4.
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2.2. Parameterizations

At the core of this study we wish to apply a seasonal (periodic) perturbation to flux attenuation and we do this 
by applying to bmodel (denominator of Equation 3) a perturbation (or “seasonal variation”) of magnitude 𝐴𝐴 �̃�𝑏(𝑡𝑡) , such 
that the sinking speed w(z) = az is replaced by a time-dependent sinking speed W(z, t) = A(t)z, with

𝐴𝐴(𝑡𝑡) =
𝜆𝜆

𝑏𝑏model + �̃�𝑏(𝑡𝑡)
=

𝜆𝜆

𝑏𝑏model
+ �̃�𝑎(𝑡𝑡) = 𝑎𝑎 + �̃�𝑎(𝑡𝑡). (4)

Equation 4 above shows that adding a seasonal variation 𝐴𝐴 �̃�𝑏(𝑡𝑡) to the constant flux attenuation coefficient bmodel is 
equivalent to adding a seasonal variation 𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡) to the sinking speed coefficient a. Equation 4 is consistent with the 
hypothesis of a seasonally varying sinking speed that increases with depth, which has been recently confirmed in 
a North Atlantic-based work by Villa-Alfageme et al. (2016). The assumption of a constant λ is addressed in the 
discussion in Section 4.5.

In order to compare the effects of seasonality to the case of constant, uniform flux attenuation, we test a modified 
version of bmodel. This new parameterization applies a cosine oscillation to the bmodel parameter. Specifically, we 
take

𝑏𝑏
model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) = 𝑏𝑏

model + �̃�𝑏(𝑡𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏𝑏
model

𝑟𝑟𝑠𝑠𝑟𝑟
− 𝛿𝛿𝑏𝑏𝛿𝛿𝑠𝑠𝑠𝑠 (2𝜋𝜋(𝑡𝑡∕𝑇𝑇 ) + (𝑡𝑡𝜋𝜋∕6)) 𝑡 if 𝑡𝑡 𝜙 0

𝑏𝑏
model

𝑟𝑟𝑠𝑠𝑟𝑟
+ 𝛿𝛿𝑏𝑏𝛿𝛿𝑠𝑠𝑠𝑠 (2𝜋𝜋(𝑡𝑡∕𝑇𝑇 ) + (𝑡𝑡𝜋𝜋∕6)) 𝑡 if 𝑡𝑡 𝜙 0

𝑏𝑏
model

𝑟𝑟𝑠𝑠𝑟𝑟
𝑡 if 𝑡𝑡 = 0

 (5)

where t is the time (in days), T is the period of one seasonal cycle (in days), ϕ is the latitude in degrees North, 
𝐴𝐴 𝐴𝐴

model

𝑟𝑟𝑟𝑟𝑟𝑟
> 0 is a reference (mean) value for bmodel, 𝐴𝐴 �̃�𝑏(𝑡𝑡) takes the time-varying form shown, 𝐴𝐴 𝐴𝐴𝐴𝐴 ≤ 𝐴𝐴

model

𝑟𝑟𝑟𝑟𝑟𝑟
 is the magni-

tude of the seasonal effect and θ is the phase, defined here as the time in months of the minimum in 𝐴𝐴 𝐴𝐴
model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in the 

Northern Hemisphere relative to 1 January. A comparison of the different phases with respect to solar radiation 
in the Southern Hemisphere is shown in Figure 1. Note that, in this model, 1 year corresponds to 360 days, and 
hence T = 360 days.

From the above, it is important to note that, while the annual mean value of 𝐴𝐴 𝐴𝐴
model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) given by Equation 5 is 

(for any choice of ϕ and θ) equal to 𝐴𝐴 𝐴𝐴
model

𝑟𝑟𝑟𝑟𝑟𝑟
 , the mean value of A(t) in Equation 4, which we will denote by 𝐴𝐴 𝐴𝐴 , does 

not equal 𝐴𝐴 𝐴𝐴∕𝑏𝑏model

𝑟𝑟𝑟𝑟𝑟𝑟
 . This means that a periodic and symmetrically varying bmodel gives a periodic but asymmetric 

sinking speed coefficient A(t). For instance, for 𝐴𝐴 𝐴𝐴
model

𝑟𝑟𝑟𝑟𝑟𝑟
= 1.388 , we have that

𝐴𝐴(𝑡𝑡) =

(

1

𝑇𝑇

)

∫
𝑇𝑇

0

𝐴𝐴(𝑡𝑡)𝑑𝑑𝑡𝑡 =

(

1

𝑇𝑇

)

∫
𝑇𝑇

0

(

𝜆𝜆

𝑏𝑏
model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡)

)

𝑑𝑑𝑡𝑡 ≈ 0.045day
−1
𝑡 

for any ϕ ≠ 0 and θ, which gives a sinking speed that is 20% faster than the one given by taking a = 0.036 day−1 
as used by the model in the non-seasonal case. The corresponding value of bmodel for this value of 𝐴𝐴 𝐴𝐴 is

𝑏𝑏
model =

𝜆𝜆

𝐴𝐴(𝑡𝑡)
=

0.05

0.045
≈ 1.110, 

which gives a flux profile where remineralization occurs deeper than for bmodel = 1.388, consistent with it sinking 
faster. In other words, the introduction of a cosine varying seasonality in bmodel increases the annual mean POC 
flux at any depth below 120 m (see, for instance, Figures 2 and 5).

We therefore also examine the case where A(t) varies seasonally about 𝐴𝐴 𝐴𝐴 = 𝜆𝜆∕𝑏𝑏model

𝑟𝑟𝑟𝑟𝑟𝑟
= 0.036 day

−1 such that the 
annual average of A(t) is 𝐴𝐴 𝐴𝐴(𝑡𝑡) = 0.045 day

−1 . In this case the annual average of bmodel is not 1.388 but 1.110 as 
described above.

For simplicity, from now on we will omit the independent variables t, ϕ and θ when referring to the parameteri-
zation above (e.g., 𝐴𝐴 𝐴𝐴

model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 instead of 𝐴𝐴 𝐴𝐴

model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) ).
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2.3. Experiments

The parameterization given by Equation 5 has three important parameters: the reference flux attenuation 𝐴𝐴 𝐴𝐴
model

𝑟𝑟𝑟𝑟𝑟𝑟
 , 

the seasonal phase θ and the seasonality strength δb. While 𝐴𝐴 𝐴𝐴
model

𝑟𝑟𝑟𝑟𝑟𝑟
 is fixed, the latter two parameters control the 

Figure 1. Top figure shows: (a) Schematic comparison between the daily average shortwave solar radiation at the sea surface (W m−2) and phytoplankton growth 
(day−1) in the Southern Hemisphere, for bmodel = 1.388. Bottom shows a comparison of averaged solar radiation and 𝐴𝐴 𝐴𝐴

model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in the Southern Hemisphere (ϕ < 0) during a 

year, for different phases θ (in months): (b) θ = 0, 𝐴𝐴 𝐴𝐴
model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and solar radiation in phase; (c) θ = 3, maximum 𝐴𝐴 𝐴𝐴

model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 after summer; (d) θ = 6, opposite phases; and (e) θ = 9, 

maximum 𝐴𝐴 𝐴𝐴
model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 before summer.
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seasonal variability in bmodel. In order to assess the influence of each of these parameters, we run the following 
series of experiments:

1.  Seasonal phase θ (phasing of phytoplankton growth relative to time of year). We test 4 different seasonal 
phases with respect to the 1 January, as shown in Figure 1. These are: θ = 0 months (shown in Figure 1b), 
which in the Southern hemisphere corresponds to a maximum (minimum) flux attenuation bmodel on 1 January 
(1 July); θ = 3 months (see Figure 1c), where a maximum (minimum) bmodel occurs at the start of October 
(April); θ = 6 months, where maximum solar irradiation matches minimum bmodel and vice-versa (Figure 1d); 
and θ = 9 months where the Southern hemisphere summer solstice radiation happens 3 months after the max-
imum bmodel (Figure 1e).

2.  Seasonal strength δb (strength of seasonal variability in bmodel). We focus on simulating the case of 𝐴𝐴 𝐴𝐴𝐴𝐴 = 0.6𝐴𝐴
model

𝑟𝑟𝑟𝑟𝑟𝑟
 

(60% of variation at peak values). For 𝐴𝐴 𝐴𝐴
model

𝑟𝑟𝑟𝑟𝑟𝑟
= 1.388 , this value of δb corresponds to bmodel varying from 0.555 

to 2.221, which roughly matches the range reported of 0.5–2.0 reported in the Introduction. To assess the 
sensitivity of variations in δb, we also simulate the cases of 𝐴𝐴 𝐴𝐴𝐴𝐴 = 0.2𝐴𝐴

model

𝑟𝑟𝑟𝑟𝑟𝑟
 (bmodel varying from 1.110 to 1.666) 

and 𝐴𝐴 𝐴𝐴𝐴𝐴 = 0.4𝐴𝐴
model

𝑟𝑟𝑟𝑟𝑟𝑟
 (bmodel varying from 0.833 to 1.943), which are presented in the Supporting Information S1.

3.  Non-seasonal runs. As a reference to compare to the seasonal runs described above, we perform non-sea-
sonal experiments (i.e., δb = 0) for selected values of 𝐴𝐴 𝐴𝐴

model

𝑟𝑟𝑟𝑟𝑟𝑟
 . These are: 𝐴𝐴 𝐴𝐴

model

𝑟𝑟𝑟𝑟𝑟𝑟
= 1.388 , which is the reference 

value for bmodel; 𝐴𝐴 𝐴𝐴
model

𝑟𝑟𝑟𝑟𝑟𝑟
= 0.555 and 𝐴𝐴 𝐴𝐴

model

𝑟𝑟𝑟𝑟𝑟𝑟
= 2.221 , which are respectively the minimum and maximum values 

assumed by 𝐴𝐴 𝐴𝐴
model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 when seasonality in bmodel is 60% of the reference value; and 𝐴𝐴 𝐴𝐴

model

𝑟𝑟𝑟𝑟𝑟𝑟
= 1.110 , which is the 

value of bmodel such that λ/bmodel gives the 1-year mean value of A(t) as discussed previously (see Section 2.2)

In terms of the sinking speed rate A(t), a seasonal strength of 𝐴𝐴 𝐴𝐴𝐴𝐴 = 0.6𝐴𝐴
model

𝑟𝑟𝑟𝑟𝑟𝑟
 translates to A(t) ranging between 

a minimum of approximately 0.023 day−1 (when bmodel = 2.221) to a maximum of approximately 0.090 day−1 
(when bmodel = 0.555). This means that, over a 1-year period, the seasonally varying sinking speed W(t) = A(t)
z at 120 m varies between 2.70 and 10.81 m day−1, and this range increases linearly to 11.26 and 45.05 m day−1 
at the mesopelagic depth of 500 m, and to 24.31 and 97.30 m day−1 at 1,080 m. These values are consistent with 
what has been reported in literature (Villa-Alfageme et al., 2016), with sinking speeds of less than 10 m day−1 ob-
served in locations such as the North Atlantic (Riley et al., 2012) and the subtropical Atlantic (Alonso-González 
et al., 2010), and from 25 to 150 m day−1 in the Southern Ocean (McDonnell & Buesseler, 2010), and also with 

Figure 2. Global annual average PO4 concentration (mmol P m−3) versus depth. Black solid line shows the World Ocean Atlas 2018 climatology. The yellow dash and 
blue dash-dot lines show the model average concentration for a constant bmodel equal to 0.858 and 1.388, respectively.
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what has been used in models - for instance, the UKESM-adopted biogeochemical model MEDUSA uses a fixed 
value of 3 m day−1 as the sinking speed for its slow pool of detritus (Henson et al., 2015; Yool et al., 2013).

Similarly, for the sensitivity experiments, when 𝐴𝐴 𝐴𝐴𝐴𝐴 = 0.2𝐴𝐴
model

𝑟𝑟𝑟𝑟𝑟𝑟
 we have A(t) ranging between 0.030 day−1 (when 

bmodel  =  1.666) to 0.045  day−1 (when bmodel  =  1.110); and for 𝐴𝐴 𝐴𝐴𝐴𝐴 = 0.4𝐴𝐴
model

𝑟𝑟𝑟𝑟𝑟𝑟
 we have A(t) ranging between 

0.026 day−1 (when bmodel = 1.943) to 0.060 day−1 (when bmodel = 0.833).

Each experiment is run for 3,000  years to reach a consistently quasi-repeating annual cycle, as per Kriest 
et al. (2010).

2.4. Metrics and Assumptions

The effects of seasonality are measured through the following quantities (here, 𝐴𝐴 𝐹𝐹  and 𝐴𝐴 PP denote the annual 
averages of both POC flux and primary production, respectively, at any location [x, y, z]): the total net primary 
production PPglobal is given by

PPglobal = ∫ PP(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥)𝑑𝑑𝑥𝑥𝑑𝑑𝑥𝑥𝑑𝑑𝑥𝑥; (6)

the local transfer efficiency TE is defined as

TE(𝑥𝑥𝑥 𝑥𝑥) =
𝐹𝐹 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 = 1𝑥 080m)

𝐹𝐹 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 = 120m)

; (7)

the global fluxes at 120 m and 1,080 m are respectively given by

𝐹𝐹120m = ∫ 𝐹𝐹 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 = 120m)𝑑𝑑𝑥𝑥𝑑𝑑𝑥𝑥 and 𝐹𝐹1𝑥 080m = ∫ 𝐹𝐹 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 = 1080m)𝑑𝑑𝑥𝑥𝑑𝑑𝑥𝑥; (8)

and the global transfer efficiency TEglobal is given by

TEglobal =
𝐹𝐹1080m

𝐹𝐹120m

, (9)

where the values of z = 120 m for export depth and z = 1,080 m for transfer depth are imposed by the depth of 
model layers, as these are the depths where the diagnostic fluxes are computed.

We note that, while sinking to depth, organic material such as POC is also advected horizontally and therefore the 
material initially at a location (x0, y0) at z0 = 120 m might no longer be at (x0, y0) when it reaches z = 1,080 m. We 
discuss the consequences of this in Section 4.

Finally, we only use output where the model is at least 1,080 m deep. This excludes shallow areas such as shelves 
and coastal locations, but including them would introduce a significant numerical bias to the PP and export flux 
relative to the flux at 1,080 m.

3. Results
In this section, we present and describe the results of the numerical simulations performed to assess the influence 
of seasonal variations in bmodel and sinking speed.

3.1. Global and Regional PO4 Distributions

The distribution of phosphate for the non-seasonal case of bmodel = 1.388 is presented in Figure 3a, which shows a 
transect of the Atlantic Ocean along longitude 25°W connecting to a transect across the Pacific Ocean at 159°W. 
Overall, it shows a good agreement with the spatial pattern in the WOA climatology (Garcia et al., 2018) shown 
in Figure 3b, except for the North Pacific where the model underestimates PO4 concentrations.

The introduction of a global seasonal perturbation in bmodel changes substantially the PO4 concentrations with 
respect to the constant bmodel simulation. Figure  4 shows the changes in concentration with respect to the 
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non-seasonal case of Figure 3a, when allowing the seasonality to change the base value of bmodel = 1.388 by 60% 
𝐴𝐴 (𝛿𝛿𝛿𝛿 = 0.6𝛿𝛿

model

𝑟𝑟𝑟𝑟𝑟𝑟
) . Generally, concentrations are increased deeper than 2,000 m in the Pacific, and decreased in the 

Atlantic down to 4,000 m. This pattern holds for all θ, with the greatest magnitude of changes for θ = 6 months 
(Figure 4c), which corresponds to maximum bmodel occurring on 1 January (1 July) in Northern (Southern) Hem-
isphere. In the latter, an increase of over 0.8 mmol P m−3 is observed in the very deep waters of the temperate 
North Pacific, with a 0.6 mmol P m−3 decrease seen across the mesopelagic Atlantic Ocean section. A high 
variability is also observed for θ = 3 months and θ = 9 months, as shown in Figures 4b and 4d respectively. A 
smaller change is observed when θ = 0 months (Figure 4a), where the variability is constrained to a maximum of 
0.3 mmol P m−3 in most of the transect. Note that, whatever the value of θ, the presence of a global seasonality 
increases the concentration in the very deep waters (below 2,000 m) of the North Pacific by at least 0.4 mmol P 
m−3 and almost doubles it for certain values of θ. It also decreases consistently the concentrations in most of the 
mesopelagic and deep Atlantic, excluding the Southern Ocean.

Figure 3. Cross-section of the global annual average PO4 concentrations field (mmol P m−3) for both: (a) the case of constant 
𝐴𝐴 𝐴𝐴

model
= 𝐴𝐴

model

𝑟𝑟𝑟𝑟𝑟𝑟
= 1.388 ; and (b) World Ocean Atlas 2018 climatology. The Pacific ocean section is taken at longitude 159°W 

(shown on the left-hand side) and the Atlantic Ocean is cross-sectioned at longitude 25°W (on the right-hand side).
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The global average concentration of PO4 at each depth is also significantly affected by the introduction of sea-
sonality. Consistent with the structure seen in Figure 4, Figure 5 shows that the presence of seasonality tends to 
decrease the global average PO4 concentration in the upper 1,500–2,000 m but increases it substantially below 
2,000 m depth. These seasonal profiles shown in Figure 5 (solid lines) fall in between the profiles given by 
scenarios of constant bmodel = 0.555 (dash-red line) and bmodel = 2.221 (dash-green line), which respectively cor-
respond to the minimum (bmodel = 1.388 minus 60%) and maximum (bmodel = 1.388 plus 60%) values attained by 
the seasonal bmodel (with seasonal variability of 60% of 𝐴𝐴 𝐴𝐴

model

𝑟𝑟𝑟𝑟𝑟𝑟
 ) across the year.

3.2. Influence of Seasonality on TE

The global maps for TE and fluxes in the non-seasonal cases of bmodel = 1.388 and bmodel = 1.110 are presented 
in Figure 6. Figures 6a and 6b show the global map of TE for bmodel = 1.388 and bmodel = 1.110, obtained from 
Equation 7, which present a spatial pattern despite the applied bmodel being uniform. We first note that, when 
bmodel = 1.388 the global mean for this diagnosed TE is 0.066, which is over 40% higher than the 0.047 predicted 
by the Martin curve (as per Equation 2), which ignores the effect of circulation (see Discussion). Similarly, for 
bmodel = 1.110 the diagnosed TE from the figure is 0.11, which is 25% higher than the Martin curve prediction 
of 0.088. Looking into these regional patterns, we note that for bmodel = 1.388 this model-diagnosed TE remains 
at around 0.05–0.06 in most of the tropical and subtropical ocean, as well as in parts of the North Pacific and in 
narrow areas of the Southern Ocean near the Antarctic coast. In the temperate and polar areas, particularly in the 
Southern Ocean, the TE map shows a value of between 0.1 and 0.2, except for a few localized hotspots located 
in the North Atlantic (60°N), Northwest Pacific (30°N), Southern Indian (40°S) and Southeast Pacific (55°S), 
where high TE values of 0.3–0.4 and above are seen. A similar spatial pattern is observed when bmodel = 1.110.

When looking separately at the POC fluxes at both 120 m and 1,080 m, presented for bmodel = 1.388 in Figures 6c 
and 6e, we observe that they present a similar pattern. However, we also note differences in spatial gradients at 
the two depths. For instance, the flux at 120 m in the Pacific Southern Ocean area (between 180°W and 90°W) 
shows a gradient from 5 to 10 g C m−2 year−1 (an increase of 100%) while the flux at 1,080 m shows a variability 

Figure 4. Changes in PO4 concentration (mmol P m−3) for a cross-section of the global ocean (in each figure, the Pacific is on the left and the Atlantic is on the 
right) for 𝐴𝐴 𝐴𝐴

model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 with a seasonality of 60% and several values of θ (in months), when compared to the non-seasonal case shown in Figure 3a: (a) θ = 0 months; (b) 

θ = 3 months; (c) θ = 6 months; and (d) θ = 9 months. All figures have salinity field contour lines (dash-dot black lines) superimposed. These figures are also 
reproduced as Figures S7–S10 in Supporting Information S1, with additional plots showing the density fields superimposed.
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from 0.2 to 1 g C m−2 year−1 in the same area which results in a higher transfer as per Equation 7. More generally, 
the fluxes are higher in both tropical and temperate regions and are low in the nutrient-poor subtropical gyres as 
expected. However, TE does not show this same pattern, being around 0.055 throughout the ocean, and therefore 
spatial patterns in productivity at the surface do not necessarily relate to those in TE. The fluxes for bmodel = 1.110 
shown in Figures 6d and 6f present a similar behavior.

A similar qualitative behavior (in TE and fluxes at both 120 m and 1,080 m depth) is observed in the non-season-
al cases of 𝐴𝐴 𝐴𝐴

model
= 𝐴𝐴

model

𝑟𝑟𝑟𝑟𝑟𝑟
= 0.555 and 𝐴𝐴 𝐴𝐴

model
= 𝐴𝐴

model

𝑟𝑟𝑟𝑟𝑟𝑟
= 2.221 , which correspond to the extrema of the seasonal 

varying bmodel with 𝐴𝐴 𝐴𝐴𝐴𝐴 = 0.6𝐴𝐴
model

𝑟𝑟𝑟𝑟𝑟𝑟
 . These are shown respectively on the left and right columns of Figure 7. We 

note that for bmodel = 0.555, which implies a faster sinking speed globally (as per Equation 3), the overall TE of 
around 0.33 is observed, and the regional patterns in TE are weaker, giving a more homogeneous global map for 
TE. On the other hand, for bmodel = 2.221, which corresponds to a very slow sinking speed (as per Equation 3), 
we obtain a value of TE below 0.010 in many areas but now with a more pronounced regional variability in TE, 
including in the subtropical areas which present near-zero transfer efficiency. This highlights the effects of the 
circulation moving material around as it sinks, which is returned to in the Discussion. The globally averaged TE 
for bmodel = 0.555 from Figure 7a is 0.35, which is closer to Equation 2 estimate of 0.29. For bmodel = 2.221 from 
Figure 7b, the globally averaged TE is 0.016, which is 110% higher than the 0.0076 given by Equation 2.

The influence of seasonality on TE is presented in Figure 8 as the fractional change in TE relative to the non-sea-
sonal case of bmodel = 1.388 shown in Figure 6a. The same comparison is made with respect to the the non-season-
al case of bmodel = 1.110 shown in Figure 6b and is available in the Supporting Information S1. Broadly, Figure 8 
shows an increase in TE at both low and high latitude areas, with the largest effects observed when θ = 6 months 
(corresponding to a maximum bmodel in July in the Southern Hemisphere and January in the Northern Hemi-
sphere), and the smallest seen when θ = 0 months (maximum bmodel in January in the Southern Hemisphere and 
July in the Northern Hemisphere) and bmodel is nearly in phase with primary production (as per Figure 1a).

Figure 5. Annual global average PO4 concentration (mmol P m−3) at each depth in the global ocean. Solid lines show the concentration profile for each phase 
θ. The blue and purple dash lines show the average concentration when a constant bmodel equals 1.388 and 1.110, respectively. The red and green dash lines show 
the concentration for a constant bmodel equal to the minimum (0.555) and maximum (2.221) of 𝐴𝐴 𝐴𝐴

model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 across the year, respectively. The yellow dash lines show the 

concentration for a constant bmodel equal to the Martin value of 0.858. The dotted black line shows the concentration profile obtained from the WOA 2018.
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Figure 6. 1-year average transfer efficiency (TE) (Figures 6a and 6b) for the case of constant bmodel and 1-year average fluxes (g C m−2 year−1) at both 120 m 
(Figures 6c and 6d) and 1,080 m (Figures 6e and 6f) depth. The column on the left-hand side show both TE and fluxes for bmodel = 1.388, while the right-hand side 
show the corresponding images for bmodel = 1.110. Note the different color bar limits in plots 6c to 6f.
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Figure 7. 1-year average transfer efficiency (TE) (Figures 7a and 7b) for the case of constant bmodel and 1-year average fluxes (g C m−2 year−1) at both 120 m 
(Figures 7c and 7d) and 1,080 m (Figures 7e and 7f) depth. The column on the left-hand side show both TE and fluxes for bmodel = 0.555, while the right-hand side 
show the corresponding images for bmodel = 2.221. Note the different color bar limits in plots 7c to 7f.
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Across the different cases in Figure 8, the Southern Ocean shows a rather distinctive behavior. There is a consist-
ent increase of over 200% (over 300% in some areas) when maximum bmodel occurs in either winter (θ = 6 months) 
or spring (θ = 3 months), and also a widespread decrease of more than 50% for a bmodel peaking in autumn 
(θ = 9 months), with a more homogeneous variability of 50%–100% seen when bmodel reaches its maximum in 
January (θ = 0 months).

In terms of global impact, Tables 1 and 2 show the values of TEglobal for non-seasonal and seasonal cases re-
spectively. When seasonality is not present, a decrease in bmodel by 60% (bmodel = 0.555) increases the transfer 

efficiency by a disproportional 478%, while an increase in bmodel by the same 
percentage (bmodel = 2.221) decreases TE by nearly 80%. This is expected 
because of the nonlinear influence that bmodel has on the sinking speed as per 
Equation 3, in which small values of bmodel (which has a minimum of zero) 
increase the sinking speed without limit, while high values of bmodel (which 
can be as high as one wishes) decrease the sinking speed down to zero at 
most. For the seasonal cases, on the other hand, the general trend is of a 
consistently higher TE. Just the presence of seasonality increases the global 
transfer efficiency by at least 145%, regardless of the relative phase θ, with 
nearly a two-fold boost observed when θ = 6 months. This is in part due to 

Figure 8. Percentage change (when compared to the non-seasonal case) in annual transfer efficiency (TE) for the parameterization 𝐴𝐴 𝐴𝐴
model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 with 𝐴𝐴 𝐴𝐴𝐴𝐴 = 0.6𝐴𝐴

model

𝑟𝑟𝑟𝑟𝑟𝑟
 , when 

compared to the non-seasonal case. Figure 8a: θ = 0 months; Figure 8b: θ = 3 months; Figure 8c: θ = 6 months; Figure 8d: θ = 9 months; The solid black contour 
curves highlight areas of zero increase (e.g., Southern Ocean in [d]) and of 200% increase (e.g., Equator in [a]). Some of the dark red areas of high-TE have a TE 
increase in excess of 300% in some singular locations near the coast.

Constant bmodel value 0.555 1.110 1.388 2.221

TEglobal 0.33 0.10 0.057 0.011

Relative change to bmodel = 1.110 +230% —– −43% −89%

Relative change to bmodel = 1.388 +479% +75% —– −80%

Note. All values shown in this table shown are to two significant figures.

Table 1 
Values of TEglobal for Different Non-Seasonal Values of bmodel
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the fact that the average value for the seasonally varying sinking speed (denoted by 𝐴𝐴 𝐴𝐴(𝑡𝑡) ) is 20% higher than the 
sinking speed for the average value of 𝐴𝐴 𝐴𝐴

model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 . The former corresponds to bmodel = 1.110, meaning deeper remin-

eralization and more nutrient accumulation below the pycnocline than the reference run with bmodel = 1.388 (see 
details in Methods). Tables 1 and 2 also compare TEglobal with values for bmodel = 1.110 and, while it also gives a 
higher TE in all seasonal scenarios, this seasonal increase is smaller than when 𝐴𝐴 𝐴𝐴

model
= 𝐴𝐴

model

𝑟𝑟𝑟𝑟𝑟𝑟
= 1.388 and varies 

from about 40% to a maximum of 70%.

3.3. Influence of Seasonality on Primary Production and the Ocean's Biological Carbon Pump

The global effect of bmodel on PP is summarized in Tables  3 and  4. For the non-seasonal reference case of  
bmodel = 1.388, this model gives a globally integrated PP of around 52 Pg C year−1 (56 P C year−1 if including 
areas shallower than 1,080 m too). This value is in agreement with ocean-observing satellites and other estimates 
of PP in the literature, which are of approximately 50 Pg C year−1, with an uncertainty of 20% (Carr et al., 2006; 
DeVries & Weber, 2017). In terms of model-derived estimates, our value is also in agreement with others such as 
the 48 Pg C year−1 reported by Lima et al. (2014).

The values for PPglobal in Table 3 (non-seasonal bmodel) show that the primary production increases with bmodel and 
decreases with the sinking speed (see Equation 3). This is expected since a lower bmodel implies faster sinking, 
with more nutrient recycling at depth (see Figure 5 for lower values of bmodel), and therefore less nutrient is avail-
able for recycling and production. While decreasing bmodel by 60% (from bmodel = 1.388 to bmodel = 0.555) reduces 
the total PP by 61% to about 20 Pg C year−1, an increment of 60% (from bmodel = 1.388 to bmodel = 2.221) increases 
the primary production by only 21% to slightly over 62 Pg C year−1.

The introduction of seasonality leads to a very different scenario for productivity. Table 4 shows that, in the case 
of a seasonal bmodel, there is a consistent decrease in production (and increase in nutrient accumulation, see Fig-
ure 5), from about 15% when θ = 0 months (43 Pg C year−1) to over 27% when θ = 6 months (37 Pg C year−1). 
When compared to bmodel = 1.110, a similar behavior is observed, with the exception of θ = 0 months, when PP 
decreases slightly by a modest 0.2%.

Seasonally varying bmodel θ = 0 θ = 3 θ = 6 θ = 9

TEglobal 0.14 0.15 0.17 0.16

Change relative to non-seasonal bmodel = 1.110 +40% +50% +70% +60%

Change relative to non-seasonal bmodel = 1.388 +150% +160% +200% +180%

Note. All values shown in this table shown are to two significant figures.

Table 2 
Values of TEglobal in the Presence of a Global Seasonality of 60% for Different Values of θ (in Months)

Constant bmodel value 0.555 1.110 1.388 2.221

PPglobal 19.99 43.69 51.63 62.58

Relative change to bmodel = 1.110 −54.25% —– +18.17% +43.21%

Relative change to bmodel = 1.388 −61.28% −15.38% —– +21.19%

F120m 4.85 5.84 5.50 3.97

Relative change to bmodel = 1.110 −16.95% —– −5.82% −32.02%

Relative change to bmodel = 1.388 −11.82% +6.18% —– −27.81%

F1080m 1.59 0.59 0.31 0.040

Relative change to bmodel = 1.110 +169.49% —– −47.46% −93.22%

Relative change to bmodel = 1.388 +412.90% +90.32% —– −87.10%

Note. All values shown in this table were rounded and therefore the resulting percentiles differ slightly from the ones computed using all significant numbers.

Table 3 
Values of PPglobal, F120m and F1080m (All in Pg C year−1) for Different Non-Seasonal Values of bmodel
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The globally integrated total POC flux in the upper ocean (here defined at the fixed depth of 120 m) is also 
presented here, integrated over regions greater than 1,080 m in depth (as explained in Methods). Tables 3 and 4 
show that it decreases slightly across the seasonal runs, however, we note that this decrease is minimum (max-
imum) when the decrease in PP is maximum (minimum), which is the scenario shown when θ  =  6  months 
(θ = 0 months). A similar behavior is shared by the non-seasonal runs: varying bmodel from bmodel = 1.388 to 
bmodel = 0.555 and bmodel = 2.221 results in a decrease of about 11% and 27% respectively; and varying bmodel from 
bmodel = 1.110 to bmodel = 0.555 and bmodel = 2.221 results in a decrease of about 16% and 32% respectively. The 
relative effects shown in Table 3 show an interesting pattern: note that while PP seems to increase with bmodel 
and the POC flux at 1,080 m decreases with increasing bmodel, flux at 120 m seems to show signs of both, with a 
maximum export happening for bmodel = 1.110.

In the context of carbon sequestering via the ocean's biological pump, we note that the presence of seasonality 
in bmodel substantially increases the amount of POC “surviving” the journey through the mesopelagic zone and 
reaching 1,080 m depth. This amount of POC transferred to the deep ocean is given by F1080m and Table 4 shows 
that, for a seasonal bmodel with 60% seasonality (i.e., 𝐴𝐴 𝐴𝐴𝐴𝐴 = 0.6𝐴𝐴

model

𝑟𝑟𝑟𝑟𝑟𝑟
 ), F1080m is increased by at least 119% with re-

spect to the reference case of bmodel = 1.388, and nearly doubles for θ = 6 months. When compared to a run with 
constant bmodel = 1.110, there is also a consistent increase in POC transfer for all phases θ, but this increase is 
much less pronounced and capped by about 55%, with the largest increase once again for θ = 6 months. However, 
we note that for θ = 0 (meaning maximum bmodel coincides with maximum solar radiation and PP), only a small 
increase of less than 17% is observed with respect to the bmodel = 1.110 run, suggesting that the seasonal variation 
in bmodel has a limited effect.

We finally note that these values of F1080m observed in the seasonally varying bmodel simulations are rather differ-
ent from those observed in the non-seasonal cases of bmodel = 0.555 and bmodel = 2.221, which corresponds to the 
maximum and minimum values attained by the seasonal bmodel. As shown in Table 3, a 60% lower but constant 
bmodel (corresponding to bmodel = 0.555) increases the POC flux at 1,080 m depth by over 412%, while a 60% 
higher bmodel (corresponding to bmodel = 2.221) actually decreases the flux by about 87%. This distinctive behavior 
indicates the importance of the various feedback (e.g., changes in nutrient supply at the surfaces due to increased 
transfer to depth) taking place in the model when bmodel, and consequently the sinking speed, varies throughout 
the year. In particular, the fact that F1080m is consistently higher when bmodel varies seasonally indicates that, over 
long time scales (in our case of about 3,000 years), the effects on the BCP due to periods of higher sinking speed 
(which correspond to periods of small bmodel and lead to a higher TE) tend to overcome the effects of lower sink-
ing speed periods (which correspond to periods of high bmodel and lower TE). This might be because, over these 
time scales, the effect of an increased transfer to depth should be higher if particles entering the deep ocean are 
trapped there for hundreds to thousands of years, hence becoming unavailable for recycling at the surface for a 
long period, while the effects of lower transfer would be lower or even null depending on the time of the year.

Seasonally varying bmodel θ = 0 θ = 3 θ = 6 θ = 9

PPglobal 43.61 41.15 37.43 39.82

Change relative to non-seasonal bmodel = 1.110 −0.19% −5.83% −14.34% −8.86%

Change relative to non-seasonal bmodel = 1.388 −15.53% −20.30% −27.50% −22.87%

F120m 5.09 5.28 5.30 5.10

Change relative to non-seasonal bmodel = 1.110 −12.84% −9.59% −9.25% −12.67%

Change relative to non-seasonal bmodel = 1.388 −7.46% −4.00% −3.64% −7.27%

F1080m 0.69 0.80 0.92 0.81

Change relative to non-seasonal bmodel = 1.110 +16.95% +35.59% +55.93% +37.29%

Change relative to non-seasonal bmodel = 1.388 +122.58% +158.07% +196.77% +161.29%

Note. All values shown in this table were rounded and therefore the resulting percentiles differ slightly from the ones computed using all significant numbers.

Table 4 
Values of PPglobal, F120m and F1080m (All in Pg C year−1) in the Presence of a Global Seasonality of 60%, for Different Values of θ (in Months)
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4. Discussion
4.1. Seasonal Effects on TE and Productivity

The results presented in the previous section show a broad spectrum of effects on TE as a result of the different 
relative phase θ, which dictates when the flux attenuation is strongest and weakest throughout the year. Even 
though the seasonally modified bmodel (see Equation 5) corresponds to a simple cosine curve in all cases, the way 
it feeds back into the system changes substantially depending when both maximum and minimum are attained, 
which is controlled solely by the phase θ. In particular, the feedback between phase and solar radiation, which dic-
tates the bloom season, explains in part why the largest relative effects on TE and PP happen when θ = 6 months. 
This value of θ means a maximum in bmodel in winter in both hemispheres, which corresponds to the sinking 
speed being minimum during winter. With productivity being largest during late-spring, there is more material 
available on the surface during the summer months, and the coupling with a high sinking speed matching this 
bloom period maximizes the amount of POC exported to the mesopelagic zone and further down, resulting in a 
high transfer efficiency. However, this higher transfer efficiency leaves less material available to be recycled back 
into PO4 in the surface, which decreases the amount of nutrient available for primary production, and hence we 
observe a stronger decrease in PP in this situation. In the model used in this work, this in turn leads to a decrease 
in phytoplankton and zooplankton, the latter meaning that less detritus is produced (see Kriest & Oschlies, 2015; 
Kriest et al., 2010). Even with less material available for sinking, the higher efficiency in transporting it to depth 
increases the absolute amount of POC that survives the journey through the mesopelagic zone and reaches the 
deep ocean.

In contrast, the effects of seasonality on TE are minimized when θ = 0 months (see also Figure 9), where the im-
pact of a variation in the flux attenuation is partially suppressed by both high productivity and detritus production 
matching periods of higher attenuation and vice-versa.

The nature of the feedback between bmodel (and sinking speed), PP and growth can also be seen when looking at 
the resulting fractional changes in TE, relative to a constant bmodel = 1.388, for θ = 3 and θ = 9 months as shown 
in Figures 8b and 8d respectively. For instance, while in the former we note an increase of over 300% in TE at the 
Southern Ocean region, the latter displays a 50% decrease in the same areas, with the converse being observed 
in the subtropical gyres (decrease in TE for θ = 3 months and increase for θ = 9 months). The asymmetry of 
these figures also means that having a scenario of fast sinking speed at times of decreasing productivity is not 
necessarily equivalent to another with slow sinking speed and increasing productivity (see also Section 3.3). This 
remains true even when the fractional change is measured with respect to a constant bmodel = 1.110 as shown in 
the Supporting Information S1.

The heart of the asymmetry seen between θ = 3 and θ = 9 months lies in the fact that, in the macroscale considered 
in this study, the intrinsic sinking movement of a POC particle is a unidirectional process (primarily governed by 

Figure 9. Average surface concentration (g C m−3) of detritus (solid black line) and phytoplankton (solid blue line) in the Northern (left, Figure 9a) and Southern 
(right, Figure 9b) Hemispheres, for the case of constant bmodel = 1.388. The figure also shows how 𝐴𝐴 𝐴𝐴

model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (dash-dotted red line) varies throughout the year in the 

respective hemisphere, for θ = 0 months. Note that the axis on the left shows the concentration and the axis on the right shows the values for bmodel.
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bmodel) and, in our model, has a velocity of order 1/bmodel (see Equation 4), which is a nonlinear function of bmodel. It 
also increases linearly with depth, meaning that the speed is slower at the surface and therefore more sensitive to 
changes. This sinking speed acts on the vertical only and competes with the background ocean circulation, which 
moves material laterally but also vertically. For small values of bmodel, the POC sinking speed is dominant over the 
circulation, but for very large bmodel, the circulation might disturb the POC movement, especially at the surface. 
Hence, a period of very slow sinking speed matching a period of high productivity might not only correspond to 
the “slow” sinking of abundant surface material but might also carry influence of other processes such as circu-
lation, a scenario that differs from a fast sinking of proportionally less abundant surface material.

Despite the asymmetries between Figures 8b and 8d, a symmetry between these phases is nearly obtained for the 
global flux F1080m, as shown in Table 4, indicating that the opposite effects seen in the subtropical gyres and polar 
areas (e.g., Southern Ocean) tend to balance each other.

4.2. Seasonal Variability in TE and Sampling

A direct consequence of a seasonal bmodel relates to sampling. First, if we consider that b is varying seasonally, 
as suggested by Bol et al. (2018), then when we measure b at a place and time we do not know what the phase of 
the seasonal variation in b is relative to PP or export. This means that we do not know whether the b measured 
is the annual maximum, minimum or something in between. As evidenced by the results in Section 3, the phase 
matters and neglecting it can substantially underestimate or overestimate both TE and carbon fluxes in the ocean 
when such b is used as bmodel.

Second, as shown in Tables 2 and 4 for bmodel = 1.388 and bmodel = 1.110, the results of seasonality are also highly 
sensitive to the shape of the seasonal curve around the reference value of b. This is also schematically indicated in 
Figure 10, where 𝐴𝐴 𝐴𝐴

model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is compared against these values of bmodel. Although the model does not reproduce global 

fields as well with bmodel = 1.110, this theoretical exercise indicates that, for an extrapolated reference value of b 
(say, the sampled annual mean), the location and value of local extrema (local maximum and minimum) in the 
annual time series can greatly reduce the potential errors that arise from extrapolated measurements of b. In fact, 
given that most sampling occurs once a year during an interval of 2–3 weeks and at a specific location, having 
a research team sampling at a specific location during a period of maximum b and another team sampling at the 
same location during a period of minimum b would give two very different results. Such studies can be reconciled 
with an annual time series with enough resolution to evidence the shape of this temporal variability.

Third, results such as Figure 5 and Tables 1–4 show that running a model with a seasonal bmodel varying between 
bmodel = 0.555 (−60% from bmodel = 1.388) and bmodel = 2.221 (+60% from bmodel = 1.388) gives very different re-

Figure 10. Time variation for 𝐴𝐴 𝐴𝐴
model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (dash blue line) in the Southern Hemisphere (ϕ < 0) compared against two constant values of bmodel, for the case θ = 0 months 

(the same applies when θ ≠ 0 and when ϕ > 0). When compared to bmodel = 1.388 (solid red line, left figure), the variation of 𝐴𝐴 𝐴𝐴
model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is symmetric. If compared to 

bmodel = 1.110 (solid yellow line, figure on right), 𝐴𝐴 𝐴𝐴
model
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is no longer symmetric.
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sults to simulations with constant bmodel at either of these extreme values. This means that neglecting the seasonal 
cycle by assuming that the b observed during a research cruise lasting a few weeks is constant all year can lead 
to significant errors in estimating TE for the whole year. These conclusions are in line with those from Henson 
et al. (2015), which in the context of export only, observed that any extrapolation of global export obtained from 
an instantaneous measurement of export efficiency can result in errors of up to ± 60%. As TE may reflect vari-
ations in export efficiency, as both are potentially increased by an increase in sinking speed, this error is conse-
quently passed to any TE measurements made in this fashion.

In order to overcome this, it is essential for the community to address how to observe the seasonal pattern of b or 
extract information such as the mean, maximum and minimum values of b and its phase relative to other PP and 
other fields. Autonomous underwater vehicles (AUV), which can collect high temporal and vertical resolution 
information in remote areas throughout the year (see e.g., Bol et al., 2018; Sanders et al., 2016), offer the possi-
bility to address the lack of information on seasonal variability, though some issues remain, particularly with the 
measurement of sinking velocities. Additionally, calibration of optical sensors in an AUV may change during the 
year affecting POC estimates.

4.3. Regional Variability in TE and Sampling

In terms of regional variability, we first note that even in the absence of seasonal and spatial variability in the 
imposed bmodel, strong regional patterns emerge in the diagnosed TE, as shown in Figures 6a and 6b (see also 
Figures 7a and 7b). These patterns are more pronounced in some regions with a strong circulation such as the 
Kuroshio and the Gulf Stream. This is also diagnosed by previous work that did not assume a constant flux at-
tenuation such as Weber et al. (2016) (see Figure 5 in their paper), who also observed higher (lower) deep ocean 
fluxes at high (low) latitudes, in opposition to Henson et al. (2012), where the highest efficiency in POC transfer 
was observed at lower latitudes.

These results diverge from the expected in two ways. First, if the power law given by Equation 1 is in fact an an-
nually averaged equilibrium solution for detritus fluxes below the euphotic zone, then we should expect that for a 
constant b = bmodel: (a) TE is given by Equation 2; and (b) TE is uniform across the ocean. However, as Figure 6a 
shows, even in the absence of a seasonal variability in bmodel, strong regional patterns appear in the diagnosed 
TE. Furthermore, the average value of this diagnosed TE map in Figure 6a is 0.066, while the TE value given by 
Equation 2 is 0.047.

We argue that the main reason for this apparent inconsistency is that both Equation 1 in this paper and Equation 
(27) in Kriest et al. (2010) do not account for the 3D ocean circulation, which over the course of a year moves 
material laterally and vertically, and account only the biogeochemical effects on sinking POC in the absence of 
circulation. In fact, when coupled to the ocean component, extra terms due to circulation are added to the detritus 
equation, and hence Equation 1 is no longer a solution to this new coupled ocean-biogeochemistry differential 
equation. Our analysis shows that the Martin curve given by Equation 1 in general underestimates the POC fluxes 
and consequently TE. This is also shown schematically in Figure 11, which compares the globally averaged value 
for the fractional transfer of material that enters layer k = 3, …, 14 from layer k−1 = 2, …, 13, given by the global 
average of

Flux(layer 𝑘𝑘)

Flux(layer 𝑘𝑘 − 1)
, 

to the values given by Equation 2. The result is that Equation 2 consistently underestimates the fractional trans-
fer between adjacent layers, with a cumulative effect being even stronger and leading to the differences in TE 
observed for bmodel = 1.388 discussed above. Note also that this error is larger in the upper layers and decreases 
in the deep ocean, where the effect of circulation is smaller (while sinking speed is larger). Although some of 
the difference observed in Figure 11 could be linked to the coarse resolution and limited accuracy of the model, 
at least some of it should be due to the circulation, giving that switching off the circulation in the model gives 
a TE map (see Supporting Information S1) that is spatially constant and equals the value of TE predicted by 
Equation 2. This fact is often neglected, but this analysis suggests that a proper account of the biological carbon 
pump might have to take the 3D ocean circulation into consideration, particularly on determining how much of 
this effect we should expect to see in reality.
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With the introduction of seasonal variability in bmodel, these spatial patters are highly affected, leading to an even 
stronger spatial variability signal, as shown in Figure 8 for different phases of θ. For instance, if θ = 0 months, 
corresponding to solar irradiation and bmodel being in phase, we note that TE doubles in the Equatorial and 
subtropical ocean, but increases more modestly in high latitude areas. For θ = 6 months, on the other hand, TE 
increases everywhere and the higher increase is observed in the high latitude areas, especially in the North Pacif-
ic and in the Southern Ocean. As discussed before, a higher transfer to depth is related to the coupling between 
periods of productivity and export. These also explain in part these regional patterns, since most of the effect is 
observed at the productive, high latitude areas. However, the roles of both the mixed layer depth and the circula-
tion can also be noted in Figure 8, as the black contour lines highlight some of the major ocean currents such as 
the Gulf stream (Figure 8d), Antarctic Circumpolar Current (Figure 8c) and Equatorial current (Figure 8a). This 
signal is likely to emerge from the balance between the POC sinking speed controlled by bmodel, changes in the 
mixed layer depth, and the 3D ocean circulation which moves POC and other passive tracers around. With both 
bmodel (and consequently the sinking speed) and the mixed layer depth changing seasonally, there will be times 
where the vertical velocity will be dominant (small bmodel) over the ocean circulation and vice versa. Hence, Fig-
ure 8 indicates that, in addition to the coupling with PP and growth, both seasonality and phase in bmodel matter 
with respect to both the annual ocean circulation and the seasonal changes in the mixed layer depth too.

This suggestion that both circulation and seasonality may lead to spatial patters in the diagnosed b (and TE) and 
could have important consequences for sampling. The geographical pattern seen in Figure 8 indicates that any rea-
sonable fieldwork-based estimates for b depend not only on the time of the year, but also the location where data 
is being collected. We note that, in this modeling study, the variation in TE at the less seasonal, tropical regions 
approximates well the global average variation in TE (as per Table 2 and Figures 8a–8d), while the very seasonal 
high latitudes and subtropical gyres are more sensitive to seasonal variations in bmodel. In fact, for all phases θ 
considered, Figure 8 indicates that the presence of seasonality consistently increases the transfer efficiency by 
around 150%–200% in the the tropics, a result that is is close to the 145%–198% of global net TE increase range 
given by Table 2. On the other hand, Figure 8b shows that this increase exceeds 300% in high latitude areas such 
as the Southern Ocean, and is lower than 50% in the subtropical gyres. Hence, assuming hypothetically that a 
seasonally varying flux attenuation with θ = 3 months represents reality, we have that if (for instance) b is esti-
mated from observations made at high latitudes during summer, the resulting value could be much lower than the 

Figure 11. Expected versus diagnosed particulate organic carbon transfer between adjacent layers.
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actual global average. Using such value in a model as the de facto global mean would therefore lead to a globally 
deeper remineralization and a global increase in transfer efficiency that could diverge significantly from reality. A 
similar conclusion can be drawn from Figure 8 for θ = 0, 6 and 9 months. This comment reflects the importance 
of moving forward from the constant Martin b = 0.858 hypothesis towards a more robust spatial and temporal 
estimate of b. For instance, as in Marsay et al. (2015) and Weber et al. (2016), where spatially varying maps for 
b were derived from the correlation between spatially scattered observations and some property one can estimate 
globally (such as surface temperature). Similar correlation algorithms, if applied to relevant processes that can be 
measured at different instants in time (for instance through remote sensing) such as surface ocean circulation and 
surface temperature, could be successfully implemented to derive seasonally varying maps of b and TE.

4.4. Impact on Export and Sequestration of Carbon

For the amount of POC leaving the upper ocean (here defined at the fixed depth of 120 m), our model gives, for 
a constant bmodel = 1.388, an export of 5.5 Pg C year−1 at 120 m, which is higher than the 4 Pg C year−1 presented 
by Henson et al. (2012) but lower than the 6.7 Pg C year−1 flux estimated by DeVries and Weber (2017), both 
for a fixed 100 m. We note here that our model-based estimate does not include places with water shallower than 
1,080 m (see Methods), which excludes the highly productive estuaries, shelves and coastal areas, and therefore 
it is an underestimated value for export.

Nevertheless, our results show that the sensitivity of POC fluxes to changes in strength and phase of the season-
ality directly impact the carbon export and sequestration by the ocean. The values for F120m presented in Tables 3 
and 4 indicate that a seasonally varying bmodel tends to decrease the POC export (considered by some authors 
as the strength of carbon pump, measured as the amount of organic carbon that is exported from the euphotic 
zone, DeVries & Weber, 2017) by 3%–7% and hence the seasonal values are even closer to the values reported 
by Henson et al. (2012). The decreased export is a direct consequence of the decrease in PP in the same seasonal 
runs, as discussed in 4.1.

Our approach ignores differences in the nature of the detritus pool composition, and our results differ from what 
has been reported by some authors such as Leung et al. (2020), who, in the context of multi-annual variability, 
find that a decrease in export production (due to climate change reasons for instance) could be balanced by a 
negative feedback mechanism in which a shift towards smaller particle size would boost both productivity and ex-
port, therefore compensating for the initial predicted decrease. Although this shift was observed in a multi-annual 
variability context, there is evidence that similar shifts in community structure and export production may happen 
seasonally as well, and hence similar feedback could potentially happen throughout a year.

It is worth noting that, for the export, there is currently no consensus on values, with estimates ranging from less 
than 4 Pg C year−1 (Henson et al., 2012) to over 12 Pg C year−1 (Laws et al., 2000), with makes it difficult to com-
pare our findings. Another difficulty when comparing these results is the different methodologies used in several 
of these studies. For example, some estimates of POC export use a fixed export depth, for example, 120 m (such 
as Henson et al., 2012), while others consider a variable euphotic zone depth (such as Siegel et al., 2014; DeVries 
& Weber, 2017). In particular, the study of DeVries and Weber (2017) exposes how much these export fluxes can 
diverge depending on the methodology adopted: while their estimate for an export flux at the variable depth of 
the euphotic zone is about 9.2 Pg C year−1, the flux at fixed 100 m is 6.7 Pg C year−1 (i.e., about 38% lower). This 
is also a difficulty for computational modeling as several models, including the one used in this study, computes 
only an averaged-bulk flux at a small number of fixed-depth values. Hence, it is not entirely a surprise that our 
estimates are closer to Henson et al. (2012) than to DeVries and Weber (2017). Overcoming this limitation and 
finding alternatives to the fixed-depth approach used here is a challenge for a correct measure of the carbon pump 
strength (Buesseler et al., 2020).

Although a seasonal bmodel tends to decrease export and consequently reduces the amount of POC available in the 
mesopelagic zone, it also allows for a more efficient transfer of POC to the deep ocean, for the reasons discussed 
in Section 4.1. The results from Table 4 show that the seasonality in bmodel increases the net fluxes at 1,080 m 
by at least 122%, which leads to a net TE increase of at least 145% when compared to the non-seasonal case of 
bmodel = 1.388 (as per Table 2). Comparing the average amount of POC sequestered in the seasonal case to the 
non-seasonal case (see Tables 3 and 4), in which the flux of POC at 1,080 m depth is 0.31 Pg C year−1, a seasonal 
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bmodel would increase the amount of POC sequestered by at least 0.38 Pg C year−1. Therefore, neglecting the sea-
sonality in bmodel when estimating the POC fluxes to depth through models might give at best an underestimated 
idea of how much carbon is sequestered in reality.

4.5. Limitations in This Approach

The approach taken in this study has a few limitations. It uses a low-resolution physical model and a simplified 
representation of the ecosystem and biogeochemistry, where the euphotic zone (top 120 m) consists of 2 layers 
only, with a fixed export depth of 120 m. This low resolution limits the spatial scale on which the complex, 
dynamic surface processes happen and might hide some second and third order physical and biogeochemical 
effects, such as eddy formation and variations in the remineralization rate (as a function of temperature for exam-
ple), that a finer resolution with a higher complexity model could capture. In addition to that, the export depth is 
fixed at 120 m and, as discussed in Section 4.4, this differs from the real ocean where the export depth can vary 
substantially and is a major challenge in quantifying the strength of the carbon pump (Buesseler et al., 2020). 
Nevertheless, this simplified approach has been used to good effect in several biogeochemical studies such as 
Wilson et al. (2019), Kriest and Oschlies (2013), Niemeyer et al. (2019), and Keller et al. (2016), to cite a few.

This study also considers a remineralization rate λ that is constant in time. Although a constant λ provides a rea-
sonable large-scale description of the tracer fields for the non-seasonal case bmodel = 1.388 (see e.g., Kriest, 2017; 
Kriest & Oschlies, 2015), we note that this is not the only choice available when considering a variable sinking 
speed in such model, since a, bmodel and λ are related by Equation 4 (see Section 2). For instance, we could have 
opted to vary both λ and bmodel seasonally, and in this way, the seasonal variability introduced in the model would 
impact both sinking speed (through bmodel) and and the rate at which the PO4 pool increases (in our model all 
detritus remineralized necessarily enters the nutrient pool, see Kriest et al., 2010). As a consequence, a season-
ally varying λ would affect how much nutrient is available to circulate and be recycled in the upper ocean, hence 
having a potential impact on production and export, and consequently on how much detritus is available to be 
remineralized. The resulting effects will depend on the relative phase between such seasonally varying λ, PP and 
sinking speed, especially in case bmodel also varies seasonally (see Supporting Information S1). On the other hand, 
changes in bmodel in the model impact the POC sinking speed solely as shown in Equation 4, and therefore it is 
unlikely that the results obtained in a seasonal λ scenario would be always the same as the ones presented in this 
study. In fact, two cases are tested and presented in the Supporting Information S1. First, if λ varies with time and 
bmodel is kept constant (in this case bmodel = 1.388), the result nearly matches the case of a constant bmodel. Second, 
if both λ and bmodel varies equally, meaning the sinking speed coefficient a = λ/bmodel is constant in time, we obtain 
a scenario that is not comparable to other seasonal cases presented. Despite these caveats, we do not have evi-
dence from real-world data on whether λ varies seasonally nor information on how it could vary to allow for such 
a choice. In fact, the seasonal variability in temperature shown by the model at each depth in the mesopelagic is 
mostly below 1 degree Celsius (See Figures S11–S16 in Supporting Information S1) and therefore is unlikely to 
be able to influence a seasonally varying remineralization rate if a temperature-dependent remineralization rate 
was introduced to the model (a similar conclusion holds for a temperature-dependence in seawater viscosity, see 
e.g., Taucher et al., 2014). This is opposed to bmodel where sufficient information is available (see Introduction) 
and therefore to constrain the seasonal variation to bmodel is the most robust option available.

The variation imposed on bmodel is also limited to a cosine perturbation to a globally constant reference value 
𝐴𝐴 𝐴𝐴

model

𝑟𝑟𝑟𝑟𝑟𝑟
 . It is arguable that a more realistic seasonally varying bmodel, although periodic, might be more irregular be-

cause it will arise from seasonal variations in, for instance, oxygen distributions (Cavan et al., 2017) and ecosys-
tem structure (Bach et al., 2019; Ikenoue et al., 2019), which in turn might affect particle size and ballast (Arm-
strong et al., 2001; Klaas & Archer, 2002). We note that, despite having evidence for seasonal variation in flux 
attenuation, we do not have a clear picture yet of the pattern of this seasonal variability (see for instance Figure 2 
in Mouw et al., 2016). However, in the absence of further information, a cosine-like bmodel provides a very simple 
but effective approach to a theoretical study of the effects of seasonality in such nonlinear system. This provides 
an indication of potential impact but cannot be taken further until a clearer observational picture is available.

Another limitation of this study is the fact that the time variation in bmodel is applied instantaneously and uniformly 
at all depths. Although consistent with the widely adopted steady state assumption in sediment trap sampling 
(Giering et al., 2017), which is usually justified by the fast sinking speed of up to 1,800 m day−1 shown by some 
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marine aggregates such as fecal pellets and marine snow (Giering et al., 2017) which would reach the deep ocean 
within 1–2 days, this scenario could be seen as unlikely given the slower sinking of other marine snow. Approxi-
mating temporal change in sinking speed propagating to a fixed depth by an instantaneous one would impact the 
particles that are already at deep parts of the ocean in the same way as those that have just entered the mesopelagic 
zone. To illustrate this, we note that for a constant bmodel = 1.388, our model gives a constant sinking speed of 
4.32 m day−1 at 120 m, which increases linearly to 38 m day−1 at 1,080 m and to 180 m day−1 at 5,000 m. Hence, 
a particle at 120 m takes about 61 days to go through the mesopelagic zone and further 43 days to get to 5,000 m 
depth. When a seasonal bmodel is introduced, these timescales change considerably: at 120 m the sinking velocity 
in a year varies between 2.70 m day−1 (when bmodel is maximum) and 10.81 m day−1 (when bmodel is minimum), at 
1,080 m it varies between 24.31 m day−1 (when bmodel is maximum) to 97.30 m day−1 (when bmodel is minimum) 
and at 5,000 it varies between 112.56 m day−1 (when bmodel is maximum) to 450.45 m day−1 (when bmodel is mini-
mum). Hence, in the seasonal case, detritus at 120 m would take between 24 (when bmodel is minimum) to 97 days 
(when bmodel is maximum) to reach 1,080 m and between 58 (when bmodel is minimum) to 235 days (when bmodel 
is maximum) to get to a depth of 5,000 m. While this could still be a valid approach to be taken for fast sinking 
POC, it is likely to cause a bias since our model does not differentiate slow sinking and fast sinking aggregates. 
To accommodate these complexities and limitations, a conjecture for a more realistic approach would be that the 
sinking speed and acceleration could be inherited and retained by the particles at surface, so that any changes 
in bmodel at surface would be seen at depth only later when the material had sunk. Such mechanism is likely to 
increase even more the TE with respect to the constant bmodel case: in the present case, if a period of high produc-
tivity coincides with a minimum in bmodel, then there will be initially a fast POC sinking but this will be gradually 
slowed by an increase in bmodel. If the POC was allowed to “carry” bmodel with it, then this exported POC would be 
accelerated at the same “high-speed” rate, which would increase the amount of POC being exported. The same is 
true if a high productivity period coincides with a maximum in bmodel, although the effect would be smaller. This 
increase in POC fluxes to depth might limit even more the nutrient availability at surface waters and decrease 
both PP and export, but at a much smaller rate as evidenced by Tables 2 and 4.

5. Conclusions
This work investigated the effects and the influence that seasonality in both bmodel and sinking speed has on the 
global nutrient distributions and carbon fluxes. The presence of seasonality increases TE, independently of the 
phase, and acts to retain nutrients and carbon in the deep ocean. It is not only the variability of bmodel that counts, 
but also the nonlinear feedback effects between the sinking speed and surface primary production and export. 
This has important consequences for the carbon pump: the sole presence of seasonality was found to increase 
the flux of POC to 1,080 m by at least 0.38 Pg C year−1, a growth of 122% in relation to the non-seasonal bmod-

el = 1.388 flux of 0.31 Pg C year−1. An increase in POC flux to 1,080 m is observed even when the comparison 
is made with the non-seasonal bmodel = 1.110 flux and: it increases the flux by least 0.10 Pg C year−1, a growth of 
17% with respect to the non-seasonal bmodel = 1.110 flux of 0.59 Pg C year−1.

It is important to point out that the aim of this study was not primarily to reproduce the observed nutrient distribu-
tions and carbon fluxes but to examine how these fields may change as a consequence of a currently poorly under-
stood process. One of the consequences of a seasonally varying bmodel is to move more material to depth - a conclu-
sion that is dependent on the particular parameterization chosen (e.g., Equation 5 in the case of this work), meaning 
that new observations are needed to unravel the seasonality in POC sinking speed, as well as to further investigate 
how it relates to variability in TE and deep ocean fluxes. This has also an impact on observational estimates of 
b (as per Equation 1) that are later used in models. While if b was constant seasonally, a single observation at a 
particular location would be representative of the annual mean, for a non-constant b the timing of sampling relative 
to the seasonal cycle of PP can have a significant impact on inferred annual carbon fluxes and transfer efficiency.

This work leaves some questions unanswered, which can only be addressed by new observations. While the 
dependence of b (used in models as bmodel) on environmental properties such as temperature and phytoplankton 
size, is increasingly recognised (Marsay et al., 2015; Weber et al., 2016) we still lack observations showing how b 
varies seasonally and co-varies with these parameters throughout the year. Ideally, we could build up an empirical 
or mechanistic relation of b to those variables, which tend to be easier to estimate and could therefore be used to 
estimate b using observations that can be readily collected throughout the year.
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Data Availability Statement
The authors used the phosphate climatology data from the World Ocean Atlas (Garcia et al., 2018), freely avail-
able at https://www.ncei.noaa.gov/products/world-ocean-atlas, to generate Figure 3b and the “WOA 2018” con-
tour curves shown in Figures 2 and 5. All the other data used in this manuscript and supplementary info was 
generated by the authors as model output, as described in Section 2, and is freely available at https://www.doi.
org/10.5281/zenodo.4926061.
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