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A B S T R A C T

Scavenging amphipods are a numerically dominant and taxonomically diverse group that are key necrophages in
deep-sea environments. They contribute to the detrital food web by scavenging large food-falls and provide a
food source for other organisms, at bathyal and abyssal depths. Samples of this assemblage have been collected
at the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) in the North Atlantic (48°50′N 16°30′W,
4850 m) for> 30 years. They were collected by means of baited traps between 1985 and 2016, covering a period
of well-characterised changes in the upper ocean. From the 19 samples analysed, a total of 16 taxa were
identified from 106,261 specimens. Four taxa, Abyssorchomene chevreuxi (Stebbing, 1906), Paralicella tenuipes
Chevreux, 1908, P. caperesca Shulenberger & Barnard, 1976, and Eurythenes spp., dominated catches and were
present in all samples.

The dominant species varied in time with P. tenuipes typically dominant early in the time series (1985–1997)
and its congener, P. caperesca, typically dominant later (2011–2016). Amphipod faunal composition exhibited a
significant correlation with the Atlantic Multi-decadal Oscillation (AMO).

Amphipod diversity was significantly lower in years with higher estimated volumetric particle flux at 3000 m.
Species richness varied significantly between AMO phases, with higher values during ‘cool’ phase.

Our results suggest a ‘regime shift’ in scavenging amphipod communities following a ‘regime shift’ in surface
ocean conditions driven by a phase shift in Atlantic climate (from cool to warm AMO). This shift manifests itself
in a remarkable change in dominant species, from obligate necrophages such as Paralicella spp., with se-
melparous reproduction to Abyssorchomene spp. which have a more varied diet and iteroparous reproduction,
and are thus potentially more able to take advantage of greater or varied food availability from increased organic
matter flux to the abyssal seafloor.

1. Introduction

Necrophagous amphipods are important components of the deep-
sea ecosystem owing to their contribution to the detrital food web
through the scavenging of large food-falls (Thurston, 1990; Nygard
et al., 2012; Havermans et al., 2013; Duffy et al., 2013). Through the
consumption and fragmentation of these large food-falls (e.g. marine
mammals and fish), they recycle and disperse nutrients at the seabed
(Horton et al., 2013). Large nekton falls are a sporadic source of nu-
trients, and studies of the feeding methods of scavenging amphipods
have shown that many species are also capable of preying upon benthic
organisms and consuming the export flux of detritus from the upper
ocean (Havermans and Smetacek, 2018).

Scavenging amphipods provide a food source for other organisms,
and are thus a vital component of secondary production cycles, acting
as a link between scavenging and predatory food webs at abyssal and
bathyal depths (Thurston, 1979; Stockton and DeLaca, 1982; Jones
et al., 1998; Higgs et al., 2014). In abyssal habitats globally, necro-
phagous amphipods from the superfamilies Lysianassoidea and Ali-
celloidea dominate both numerically and taxonomically, and are
readily sampled using baited traps (Wolff, 1971; Smith, 1985; Thurston,
1990; Janßen et al., 2000; De Broyer et al., 2004).

The importance of necrophagous amphipods in deep-sea food webs
was not appreciated initially because of their rarity in benthic and su-
prabenthic trawl catches (Thurston, 1990; De Broyer et al., 2004). The
presence of hundreds of individuals in a single trap sample led Thurston
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(1979) to suggest that this apparent rarity was likely to be a result of
their well-developed swimming ability (Laver et al., 1985; Sainte-
Marie, 1986; Takeuchi and Watanabe, 1998; Ide et al., 2007), allowing
them to evade slow-moving trawls and sledges. The use of baited traps
in the deep sea has a long history. Traps were deployed as early as 1888
from the Hirondelle during an expedition of the Prince of Monaco, and
between 1892 and 1912, 21 deployments of baited traps deeper than
3000 m were undertaken (Richard, 1934). After these early studies, it
was not until the advent of more advanced technology, that the use of
baited cameras revealed an active guild of mobile scavengers comprised
largely of crustaceans and fish (Isaacs, 1969; Hessler et al., 1972).
Baited traps are now used commonly to study the necrophagous guild in
the deep sea, but despite this, few studies have analysed replicate baited
trap samples for species composition at depths greater than 2000 m,
especially over extended time series.

In the North Atlantic Ocean, Desbruyères et al. (1985) examined
catches from 62 trap-sets from eight stations at depths of 230–4700 m
in the Bay of Biscay, Thurston (1990) analysed 44 traps taken over a
wide latitudinal and bathymetric range (8–50°N, 3144–5940 m), and
reported a degree of faunal homogeneity across six abyssal plains. In
contrast, Christiansen (1996) sampled three localities along longitude
20°W (34°, 47° and 59°N, ~3000–5100 m) and found the northern
station to be isolated from those further to the south. Duffy et al. (2012)
explored catches from eight traps set in the canyons off Portugal at
3194–4445 m, and Horton et al. (2013) studied the scavenging am-
phipod faunal composition at a single depth (2500 m) on the Mid-
Atlantic Ridge, by fully analysing 12 trap samples taken over a 4-year
time span. Other studies in the North Atlantic include those of Wickens
(1983) and Jones et al. (1998).

Replicate baited traps from other regions have been analysed in-
cluding the Mediterranean Sea (Albertelli et al., 1992, 6 traps at
1845–4505 m), the Gulf of Mexico (Escobar-Briones et al., 2010, 5 traps
at 3308–3732 m), the South Atlantic Ocean (Duffy et al., 2016, 10 traps
at 482–2073 m), the Arabian Sea (Janßen et al., 2000, 4 traps at
3190–4420 m; Treude et al., 2002, 5 traps at 1908–4420 m), the North
Pacific Ocean (Shulenberger and Hessler, 1974, 2 traps at 5720 m;
Shulenberger and Barnard, 1976, 2 traps at 5700 m; Hessler et al.,
1978, 2 traps at 9605–9806 m; Ingram and Hessler, 1983, more than 20
traps at 5623–6018 m; Wilson et al., 1985, 27 traps at 1284–2970 m;
France, 1993, 5 traps at 7218–9604 m; Shi et al., 2018, 4 traps at
6990–10840 m), the South Pacific Ocean (Thurston, 1999, 6 traps at
7800 m; Blankenship et al., 2006, 13 traps at 5515–10787 m; Jamieson
et al., 2011, 7 traps at 4329–7966 m; Jamieson et al., 2013a, 2 traps at
6265–7000 m; Fujii et al., 2013, 5 traps at 4602–8074 m; Eustace et al.,
2016, 5 traps at 4602–8074 m; Lacey et al., 2016, 43 traps at
1488–9908 m; Lacey et al., 2018, 31 traps at 1490–9908 m; Wilson
et al., 2018, 7 traps, 6253–10817 m), the Arctic Ocean (Premke et al.,
2006, 6 traps at 1468–2644 m) and the Southern Ocean (De Broyer
et al., 2004, 31 traps at 171–3739 m; Cousins et al., 2013, 6 traps at
4161–4192 m). While replicate studies of scavenging amphipods have
been carried out, often they have been limited in scope, aiming gen-
erally to make spatial comparisons between regions, or trenches, or
across a depth range. Long-term studies of scavenging amphipods at a
single abyssal site have never been undertaken.

The structure of scavenging amphipod assemblages is known to vary
with water depth, latitude, and productivity regime (Christiansen,
1996; Christiansen and Martin, 2000; Blankenship et al., 2006;
Jamieson et al., 2011; Duffy et al., 2012; Horton et al., 2013; Lacey
et al., 2016). Latitudinal differences in the assemblage structure of
scavenging amphipods at abyssal depths in the northeast Atlantic
(Christiansen, 1996) reflected the trend reported for the ichthyofauna
and the megafauna (Merrett, 1987; Thurston et al., 1995; Merrett and
Fasham, 1998). These trends have been linked to the productivity of
surface waters, with higher abundances and lower species diversities
under eutrophic conditions when compared with oligotrophic areas.
Surface productivity may have an indirect influence on the amount of

food available to necrophages (Christiansen and Martin, 2000). Areas
with high productivity are associated with a greater abundance of or-
ganisms in the upper ocean, which will likely result in a greater con-
centration of food-falls available to necrophages on the sea floor
(Neilsen and Gosselin, 2011; Higgs et al., 2014). Increased discards
from commercial fishing activities have also been postulated to have
the potential to affect populations of scavengers at depth (Havermans
and Smetacek, 2018). This increased availability of food to necrophages
has been linked to higher abundances of scavengers at eutrophic sites.
Drazen et al. (2012) showed a positive correlation between populations
of scavenging deep-sea demersal grenadiers and pelagic Pacific hake
populations, the latter being the target of the largest commercial fishery
in the region.

The Porcupine Abyssal Plain Sustained Observatory (PAP-SO), si-
tuated in the subpolar Northeast Atlantic, at 48°50′N 16°30′W and a
water depth of 4850 m (Fig. 1), is a key site for the long-term study of
the deep ocean. Operations at the PAP-SO aim to reveal links between
the atmosphere (e.g. CO2), the upper ocean (phytoplankton and zoo-
plankton), the deep ocean (carbon flux), and the deep-sea floor, in-
cluding its resident animal population (Hartman et al., 2012). The PAP-
SO site has been subject to long-term observations since it was first
sampled in 1985 (Thurston, 1986). Subsequently, sampling at the site
became more frequent through the Joint Global Ocean Flux Study
(JGOFS) in 1989 (Lampitt et al., 2010a), and was intensively re-
searched during the EU “High-resolution temporal and spatial study of
the BENthic biology and Geochemistry of a northeastern Atlantic
abyssal Locality” project (BENGAL, Billett and Rice, 2001) which fo-
cussed on temporal changes in benthic biology and geochemistry. Since
1989, this abyssal study site has become a major focus for international
and interdisciplinary scientific research and monitoring including water
column biogeochemistry, physics and benthic biology. It forms part of
several collaborative efforts to enhance broader scale ocean observing
(e.g. the OceanSITES component of the Global Ocean Observing System
(GOOS)) and is a key site in the Integrated Carbon Observing System
(ICOS) and European Multidisciplinary Seafloor and water column
Observatory (EMSO), both European Research Infrastructure Consortia
(ERIC). This region of the North Atlantic has been noted for interannual

Fig. 1. Left, NE Atlantic, indicating position of the Porcupine Abyssal Plain
Sustained Observatory (PAP-SO) and the monitoring sites for the Hurrell North
Atlantic Oscillation Station-Based index (Lisbon, Reykjavik). Right, Estimated
seafloor locations of amphipod traps deployed on the Porcupine Abyssal Plain,
see Table 1 for sample detail by letter code (A-S). Abyssal hills in the area are
indicated with 100 m-interval bathymetric contours, where 4800 m is the base
contour. (WGS84 datum, Mercator projection).
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and seasonal variations in the carbon flux reaching the abyssal seafloor
(Lampitt et al., 2010b). The PAP-SO study area is predominantly a re-
latively uniform abyssal plain environment, punctuated by the presence
of abyssal hills. These features can have a strong influence on food
availability and therefore species abundance and biomass (Durden
et al., 2015; Durden et al., this issue).

Previous time-series studies at the PAP-SO have noted widespread,
substantial changes in the abundance, biomass, diversity and ecosystem
functioning of the meio- (protist and metazoan), macro-, and megafaunal
components of the benthos (Billett et al., 2001, 2010; Gooday et al., 2010;
Kalogeropoulou et al., 2010; Soto et al., 2010). This change was initially
most evident among two small holothurian species, Amperima rosea (Perrier,
1886) and Ellipinion molle (Théel, 1879), and was thought to be linked to
inter-annual or longer-term change in the flux of organic matter to the
seafloor (Billett et al., 2001). The former species subsequently provided a
name for this temporal change in the benthos, an “Amperima event”, the
initial event having been noted in data from 1996, with a subsequent event
suggested in 2002 data (Billett et al., 2010). Again, a potential link to
temporal change in the quantity or quality (biochemical composition) of
detrital flux to the abyssal plain was suggested, with possible supporting
evidence derived from studies of holothurian reproduction and nutritional
biochemistry (Kiriakoulakis et al., 2001; Wigham et al., 2003a, b; Ramirez-
Llodra et al., 2005; FitzGeorge-Balfour et al., 2010). In a joint assessment of
long-term time-series observations at the PAP-SO and similar studies at
Station M in the NE Pacific (Smith et al., 2020), Smith et al. (2009) in-
dicated the potential for climate-driven change in surface ocean commu-
nities to have a rapid impact on the abyssal benthos. The latter authors
suggested connections between climate indices, the Northern Oscillation
Index (NOI) at Station M and the North Atlantic Oscillation (NAO) index at
PAP-SO, deep water column fluxes of organic matter, and temporal change
in deep-seafloor communities. Smith et al. (2009) further noted the dou-
bling in abundance of the scavenging macrourids Coryphaenoides armatus
(Hector, 1875) and C. yaquinae Iwamoto and Stein, 1974 at Station M and
potential linkage with changing epipelagic carrion supply as influenced by
commercial fishing and climate variation (Bailey et al., 2006; Drazen et al.,
2008).

Given the established major changes in the benthos of the PAP-SO
(Amperima events) and their possible connection to temporal variations
in the flux of organic matter to the seafloor, and the potential occur-
rence of similar responses in the scavenging fish population at Station
M, here we examine (a) long-term change in the PAP-SO scavenging
amphipod assemblage, and corresponding change in (b) the flux of
organic matter to the seafloor and (c) potentially related climate in-
dices. The amphipod dataset represents the longest duration biological
observation series at the PAP-SO, having been initiated in 1985
(Thurston, 1986) and continuing to the present day (Hartman, 2019), it
may therefore have the greatest power to detect climate-driven secular
change at the abyssal seafloor.

2. Material and methods

2.1. Study area

All samples were collected from the Porcupine Abyssal Plain
Sustained Observatory (PAP-SO) area (Hartman et al., 2012) having a
nominal central location of 48°50′N 16°30′W and water depth of
4850 m (Billett and Rice, 2001; Fig. 1). Full station information for the
scavenging amphipod samples used in this contribution is provided in
Table 1. The centroid of the sampled locations was 48°56′N 16°28′W,
with all samples recovered from within 32 km of that position, and the
majority (15 of 19) from within 15 km of the centroid. Recorded water
depth at time of trap deployment ranged from 4839 to 4851 m, con-
sistent with the level-bottom seafloor environment of the abyssal plain
in this area. Fig. 1 shows the estimated seafloor locations of the am-
phipod traps and the general bathymetry of the area.

2.2. Sample collection

Nineteen samples, collected using a variety of freefall trap-rigs set
between the years 1985 and 2016, were selected for this study. These
include samples from purpose-designed amphipod trap systems and
from opportunistic additions of traps to other benthic lander systems
(section 2.2.1). Additional necrophagous amphipod samples have been
collected from the PAP-SO area during this period. For the purposes of
this study we rejected samples on two conditions: (i) deployments re-
turning with very low numbers of specimens on the grounds that they
would not adequately represent species diversity or species composi-
tion; in the present study the minimum number of individuals per de-
ployment was 208 (sample R; Table 3a); (ii) deployments of ex-
ceptionally long durations (referred to as soak times), on the grounds
that within-trap predation, and/or temporal succession may have re-
sulted in substantial modification of diversity and composition char-
acteristics. In the present study the maximum soak time was 104 h
(sample G; Table 1). All of the samples included in the present analyses
were derived from baited traps (Section 2.2.1), deployed on a ballasted
seafloor-landing frame, equipped with an acoustic release unit and
buoyancy to enable subsequent recovery of the trap system (see e.g.
Jamieson et al., 2013b; Jamieson, 2016).

2.2.1. Trap types
The earliest trap design, employed at the PAP-SO in 1985 and 1986

and described as the Cyana amphipod trap (Thurston, 1986), was a
system of two benthic traps (only one trap used in 1986) in a rectan-
gular frame about 1000 mm long by 800 mm wide by 800 mm high.
The system delivered pumped odour-laden seawater to the traps. One of
the two traps contained the bait container (Table 1; Thurston, 1986;
Roe, 1987). The benthic traps measured 500 × 500 × 200 mm, had a
solid top and bottom, and four walls each with a large rectangular
window into which was fitted a 500 μm mesh funnel with a
40 × 40 mm aperture (Fig. 2A, denoted MAR). In operation, the trap
apertures would be located within 50 cm of the seafloor. A cylindrical
bait container of 10 mm mesh was located centrally in the trap. Bait
consisted of two whole mackerel (Scomber scombrus) one of which was
wrapped in muslin.

For samples collected in 1991, 1994, 1996, and 1997, the Cyana
amphipod trap system was reconfigured and renamed the DE-rated
Mark And Recapture system (denoted DEMAR in Table 1; Fig. 2A), with
the addition of a suprabenthic trap with apertures located 100 cm from
the seafloor in operation. The suprabenthic trap consisted of a cylinder,
725 mm in length and 300 mm internal diameter, with mesh funnel
entrances (45 mm diameter final aperture) at each end and was baited
with a single muslin wrapped mackerel.

In 1997, in addition to the DEMAR traps, deployments were made
using traps attached to a Royal Netherlands Institute for Sea Research
(NIOZ) benthic lander (Rice, 1997; Witbaard et al., 2000). These
comprised three simple baited pipe traps attached to the lander at 50,
100, and 200 cm above the seafloor in operation. The traps were cy-
lindrical, 40 cm in length and 7 cm in internal diameter, with slot like
apertures of order 15 × 60 mm.

Since 2011, a new amphipod trap system has been in use (denoted
AMPHIPOD TRAP in Table 1; Fig. 2B) comprising four traps on one rig;
two benthic and two suprabenthic traps set at 90°to each other. Each
trap is a cylinder, 500 mm in length and 290 mm internal diameter,
with a double funnel entrance (45 mm then 35 mm apertures) at one
end, baited with a single mackerel. This system was successfully de-
ployed at the PAP-SO in 2011, 2012, 2013, and 2016 (Table 1; Ruhl,
2012; Lampitt, 2013; Lampitt, 2014; Stinchcombe, 2017).

The trap systems were launched, buoyancy first, with the frame
hung over the stern on a crane and released with a slip hook. Ideally the
system was left in situ for 24 h, but soak times varied widely (6–104 h)
owing to ship schedule constraints and weather conditions. There is a
large gap from 1997 until 2011 during which no trap samples were
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collected. This gap represents the retirement of one of the authors
(MHT), and a later continuation of the time series. There are some re-
plicate samples (years 1994, 1997, 2011, 2012, 2013, 2016), with the
current aim being to collect two replicate samples each year.

2.2.2. Sample processing
On recovery of the trap samples, specimens were fixed in either

100% ethanol or borax-buffered 4% formaldehyde. Formaldehyde-fixed
material was transferred to 80% industrial methylated spirit solution on
return to the laboratory. All amphipod specimens were identified to the
species level except for specimens in the genus Eurythenes. As detailed
by Horton et al. (2020a, this issue) the genus Eurythenes is now known
to comprise four distinct species at the PAP-SO. Eurythenes species are
therefore enumerated at the genus level. Species names and authorities
have been checked with the World Amphipoda Database (Horton et al.,
2020b). Specimens without binomial names are given a code to facil-
itate later referencing.

Although benthic and suprabenthic traps have been used, the spe-
cimen numbers for each of the traps in each trap-set were combined to
produce a single count for each station.

The samples collected in 2011 (samples L and M) contained some four
to five times as many specimens as the next largest sample (Table 3a) and

were considered too large to sort in totality. These samples were split using
a MOTODA plankton splitter (Motoda, 1959). In each case 1/8th (2 × 1/
16th) of the original sample was enumerated and used to calculate the
total sample size according to the methods in Dahiya (1980) and Griffiths
et al. (1984). Specimens of Eurythenes could be identified easily by their
large size when compared to other amphipod specimens present in the
sample (Supplementary Fig. 7). Such a disparity in size could affect the
performance of the splitter by causing the sample to clump (Griffiths et al.,
1984). Prior to sample splitting, all Eurythenes spp. specimens were re-
moved, and fully enumerated, to avoid the potential interference of these
large specimens in the splitting process. Specimens are stored in the Dis-
covery Collections at the National Oceanography Centre (DISCOLL,
NOC, UK; https://www.gbif.org/grscicoll/institution/74ae2bc3-e5a8-
443f-bc8b-89cc223500d1). The raw data can be downloaded from the
Ocean Biogeography Information System (OBIS) at: http://ipt.iobis.org/
obis-deepsea/resource?r=pap_scavenging_amphipods.

2.3. Assessment of species diversity and composition

Amphipod trap sample diversity was examined by the rarefaction
and extrapolation of Hill numbers 0D, 1D, and 2D, respectively species
richness, the exponential form of the Shannon index, and the inverse

Table 1
Station data for scavenging amphipod samples collected from the Porcupine Abyssal Plain Sustained Observatory area between 1985 and 2016. Samples are coded A-
S, with locations shown in Fig. 1.

Sample Code Station Number Date Latitude Longitude Water depth (m) Soak time (h) Bait type Trap type

A 52216#5 23/06/1985 48° 50.0′ N 016° 30.4′ W 4842 35 Chopped fish (unspecified) Mark & Recapture Systemc

B 52403#20 08/12/1986 49° 10.9′ N 016° 16.7′ W 4849 17 1 × Abyssal grenadiera Mark and Recapture Systemc

C 52701#35 22/05/1991 48° 48.5′ N 016° 23.6′ W 4843 20 2 × Mackerelb (in mesh cage) DEMAR designc

D 53201#18 12/04/1994 48° 47.0′ N 016° 34.2′ W 4846 15 2 × Mackerelb (in mesh cage) DEMAR designc

E 53201#25 14/04/1994 48° 49.1′ N 016° 31.0′ W 4844 26 2 × Mackerelb (in mesh cage) DEMAR designc

F 12930#83 18/09/1996 48° 56.1′ N 016° 35.5′ W 4839 14 2 × Mackerelb (in mesh cage) DEMAR designc

G 13077#4 14/03/1997 48° 55.8′ N 016° 35.2′ W 4844 104 3 × Mackerelb (3 traps) Pipe traps on NIOZ Lander
H 13077#35 19/03/1997 48° 58.1′ N 016° 24.9′ W 4845 84 3 × Mackerelb (3 traps) Pipe traps on NIOZ Lander
I 13077#92 27/03/1997 48° 49.5′ N 016° 21.0′ W 4844 21 2 × Mackerelb (in mesh cage) DEMAR designc

J 13078#14 01/04/1997 48° 55.1′ N 016° 25.1′ W 4845 13 2 × Mackerelb (in mesh cage) DEMAR designc

K 13078#22 03/04/1997 48° 43.0′ N 016° 38.2′ W 4842 6 2 × Mackerelb (in mesh cage) DEMAR designc

L JC062#063 08/08/2011 49° 05.3′ N 016° 40.0′ W 4848 27 1 × Mackerelb per trap (4 total) AMPHIPOD TRAP
M JC062#072 10/08/2011 48° 52.8′ N 016° 17.5′ W 4851 30 1 × Mackerelb per trap (4 total) AMPHIPOD TRAP
N JC071#020 04/05/2012 49° 00.3′ N 016° 27.0′ W 4847 17 1 × Mackerelb per trap (4 total) AMPHIPOD TRAP
O JC071#034 05/05/2012 48° 57.8′ N 016° 30.1′ W 4846 40 1 × Mackerelb per trap (4 total) AMPHIPOD TRAP
P JC085#010 21/04/2013 48° 59.4′ N 016° 30.5′ W 4840 23 1 × Mackerelb per trap (4 total) AMPHIPOD TRAP
Q JC085#019 22/04/2013 48° 59.4′ N 016° 30.4′ W 4843 62 1 × Mackerelb per trap (4 total) AMPHIPOD TRAP
R DY050#27 25/04/2016 49° 00.4′ N 016° 23.8′ W 4850 26 1 × Mackerelb per trap (4 total) AMPHIPOD TRAP
S DY050#100 02/05/2016 49° 00.6′ N 016° 23.8′ W 4850 24 1 × Mackerelb per trap (4 total) AMPHIPOD TRAP

a Coryphaenoides armatus.
b Scomber scombrus.
c Considered to be the same in subsequent analyses.

Fig. 2. Amphipod trap type. (A) DE-rated
Mark & Recapture (DEMAR) system, car-
rying original mark and recapture trap
(MAR) and suprabenthic trap (ST) used for
samples collected between 1991 and 1997.
(B) Currently operated AMPHIPOD TRAP
system used since 2011, carrying two
benthic traps (BT) and two suprabenthic
traps (ST) set at 90° to each other.
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form of Simpson's index (Hill, 1973; Chao et al., 2014). The analyses
were carried out using the methodology described by Hsieh et al.
(2016) as implemented in the R computing environment (version 3.6.0;
R Core Team, 2019) using the iNEXT package (version 2.0.19; Hsieh
et al., 2019). Diversity measures and corresponding 95% confidence
intervals, were calculated for samples rarefied, or extrapolated, to ex-
pected values for 500 and 1000 specimens. In addition, corresponding
values were calculated for sample data aggregated to the year of sam-
pling. Note that the time between deployments within a given year
spans only 1–20 days, i.e. within a single cruise, (see Table 1).

Variations in amphipod species composition between samples and
years were visualised using non-metric multidimensional scaling
(NMDS) ordination of Bray-Curtis dissimilarity based on sample-stan-
dardised data (i.e. percentage abundance of a species within a sample;
see e.g. Clarke, 1993). This was followed by SIMPER analysis to identify
characteristic species and ANOSIM to assess the significance of the
environmental factors. The sample set contains variable ‘soak-times’
and trap designs, which could influence the sample composition so the
catch size and diversity measures were tested against these factors using
Spearman’s rank correlation, prior to subsequent analyses. The possible
influence of seasonality was investigated by classifying each sample to
seabed phytodetritus present and absent periods of the year, based on
the prior observations reported by Bett et al. (2001), i.e. present
May–September (8 samples), absent October–April (11 samples). Catch
size, all diversity measures (S total, and 0D, 1D, and 2D for 500 and 1000
individuals), and MDSx as a summary of species composition, were
compared between these seasons using Mood's median test.

2.4. Environmental factors

2.4.1. Organic matter flux
Sediment traps (McLane Parflux, 21, 0.5 m2 aperture; Honjo and

Doherty, 1988) have been operated at the PAP-SO, or near vicinity
(Lampitt et al., 2001), on a subsurface mooring from 1989 to the pre-
sent day (Lampitt et al., 2010b). For this study we accessed available
data (April 1989–April 2018) from traps deployed at c. 3000 m water
depth (1850 m above bottom). Individual sample collection periods
varied from 4 to 70 days, with a median of 14 days. Trap operation,
sample handing, and flux parameter determination followed estab-
lished protocols (Knap et al., 1996; Lampitt et al., 2000; Salter, 2007)
and best practice (Pebody and Lampitt, 2016). In this contribution we
reference three measures of organic matter flux: estimated volumetric
flux (EVF, mL m−2 d−1), dry weight flux (DW, mg m−2 d−1), and or-
ganic carbon flux (CORG, mg C m−2 d−1). To establish a conventional
time-series dataset, the original variable interval trap data were con-
verted to fortnightly values, using a duration-weighted average where
necessary. The resultant data were subject to modelling / interpolation
via a ‘seasonal decomposition of time series by LOESS’ (STL)
method (Cleveland et al., 1990). These analyses were carried
out in the R computing environment (version 3.6.0; R Core Team, 2019)
using the ‘stlplus’ package (version 0.5.1; Hafen, 2016). The
STL-derived ‘predicted’ fortnightly values were then averaged for
the years corresponding to amphipod trap catches where some
original organic matter flux data were available for that year
(EVF and DW 1994–2016; CORG 2011–2016; Fig. 3; Table 2). All di-
versity parameters (n = 500 and n = 1000 D0, D1, and D2) were cor-
related against the flux parameters at 3000 m (EVF, DW, and CORG).

2.4.2. Climate indices
Two climate indices were used as environmental factors in co-analyses

with the amphipod sample data. Firstly, the Hurrell North Atlantic
Oscillation (NAO) index (Station-Based) (Hurrell et al., 2003); accessed 22
March 2020, https://climatedataguide.ucar.edu/climate-data/hurrell-
north-atlantic-oscillation-nao-index-station-based. The winter index, De-
cember–March, is employed here, based on the difference of normalized sea
level pressures between Lisbon, Portugal and Stykkisholmur/Reykjavik,

Iceland (Fig. 4, Table 2). Typically, a positive NAO brings stormy westerlies,
cool summers, and mild and wet winters while negative NAO values are
associated with suppressed westerlies and cold dry winters. For our analyses
‘positive’ and ‘negative’ values of the index were used as a categorical
variable.

Secondly, the Atlantic Multi-decadal Oscillation (AMO) index
(Trenberth and Shea, 2006); data provided by the Climate
Analysis Section, NCAR, Boulder, USA, accessed 22 March 2020, https://
climatedataguide.ucar.edu/climate-data/atlantic-multi-decadal-oscillation-
amo. Note that those data only cover the period to 2010, consequently,
additional data were sourced from https://www.esrl.noaa.gov/psd/data/
timeseries/AMO/, and were processed using a 77-month, centred, running
mean to generate values for the years 2011–2016 (Fig. 4; Table 2). The
AMO has been identified as a coherent mode of natural variability occurring
in the North Atlantic Ocean with an estimated period of 60–80 years. It is
based upon the average anomalies of sea surface temperatures in the North
Atlantic basin, typically over 0–80°N. For our analyses ‘cool’ and ‘warm’
phase AMO are used as a categorical variable.

3. Results

3.1. The scavenging amphipod assemblage

From the 19 amphipod trap samples, 106,261 specimens were identified
(Table 3a). Sixteen amphipod taxa were recorded, seven of which were
found in most of these samples, while the remaining nine taxa were re-
ported in only some of the samples or were rarely collected. The number of
specimens collected in each sample was highly variable, from a low of 208
specimens (Sample R, in 2016) to a maximum of 43,240 (Sample M, in
2011). The number of specimens collected was not correlated with soak
time (Spearman’s rank, rs[17] = 0.247, p= 0.309) or with year of collection
(rs[17] = 0.153, p = 0.533), nor did it vary between trap types (Mood’s
median test, χ2[3] = 2.60, p = 0.458).

Four taxa, Abyssorchomene chevreuxi (Stebbing, 1906), Paralicella
tenuipes Chevreux, 1908, P. caperesca Shulenberger and Barnard,
1976, and Eurythenes spp., dominated individual catches across
the time series, and were present in all samples considered here.
Rank 1 dominance (Berger-Parker index, Nmax/N; e.g. May, 1975)
varied widely, 0.204 to 0.876, but was not correlated with
soak time (rs[17] = −0.067, p = 0.786), year of collection
(rs[17] = 0.255, p = 0.291), or catch size (rs[17] = 0.365, p = 0.124),
nor did it vary between trap types (χ2[3] = 4.60, p = 0.203).

The dominant species varied over the time period studied
(Table 3b). Paralicella tenuipes was typically dominant (in 8 of 11
samples) in the first half of the time series (1985–1997, comprising
between 31 and 77%), having a relative abundance that exhibited a
statistically significant negative correlation with year of sampling
(rs[17] = −0.592, p = 0.008). In contrast, its congener, Paralicella
caperesca, was typically dominant, rank 1 or 2, in the second half of the
time series (2011–2016, comprising between 53 and 88%), having a
relative abundance that exhibited a statistically significant positive
correlation with year of sampling (rs[17] = 0.687, p = 0.001). Conse-
quently, these two species, P. tenuipes and P. caperesca, exhibited a
statistically significant negative correlation in their relative abundances
(rs[17] = −0.644, p = 0.003), reflecting the switch in dominance from
the earlier to later years of the time series.

Other dominant taxa were more variable in their occurrence.
Abyssorchomene chevreuxi comprised 28% of the sample in 1991, and
57–68% of the samples collected in 2011, and was a co-dominant with
P. tenuipes, P. caperesca, and Eurythenes spp. in one of the samples from
1997. The giant amphipod Eurythenes spp. contributed substantially to
the samples from 1985, 1986, and one of the samples from 1997
(making up 29, 27 and 20% of those catches respectively), and was the
rank 1 or 2 taxon in 2016 samples (39–42%). In other years, this genus
was relatively less abundant (0.72–12%) with the lowest relative
abundances recorded in 1994 and 2012.
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Other frequently encountered species included: Abyssorchomene abys-
sorum (Stebbing, 1888) (19/19 samples, maximum relative abundance
18%), Abyssorchomene gerulicorbis (14/19, 17%), Paracallisoma idioxenos
Horton and Thurston, 2015 (18/19, 2%), Haptocallisoma lemarete Horton
and Thurston, 2015 (11/19, 11%), and Valettietta gracilis Lincoln and
Thurston, 1983 (10/19, 5%). The less frequently encountered taxa were:
Valettietta lobata Lincoln and Thurston, 1983 (2/19, 0.2%), Cyclocaris lowryi
Horton and Thurston, 2014 (6/19, 0.4%), Paracentromedon sp. DIS-
COLL_PAP_52216 (6/19, 2.0%), Cleonardo sp. DISCOLL_PAP_13077
(2/19, 0.1%), Calliopiidae sp. DISCOLL_PAP_13078 (1/19, 0.2%), Para-
ndania gigantea (Stebbing, 1883) (2/19, 0.1%), and Oedicerina vaderi
Coleman and Thurston, 2014 (1/19, 0.1%). Some of these rarer taxa, in-
cluding Paracallisoma idioxenos, Haptocallisoma lemarete, and Valettietta
gracilis were found in greater numbers in 1997.

Sample compositions in 1991 and 2011 are distinct from other
years. In 1991, both A. chevreuxi (29%) and A. abyssorum (17%) were
represented in much greater abundances than in other years. The two
traps analysed in 2011 stand out in having the highest overall abun-
dances (43,240 and 32,793 individuals).

Fig. 3. Estimated volumetric flux of particulate material to moored sediment trap (3000 m water depth) at the Porcupine Abyssal Plain Sustained Observatory site.
Measured and modelled values are shown (see text for detail), and years with corresponding amphipod trap catches indicated (star symbol).

Table 2
Environmental factors: North Atlantic Oscillation index (NAO); Atlantic Multi-
decadal Oscillation index (AMO); vertical flux of material as measured in a
sediment trap moored at 3000 m water depth in the Porcupine Abyssal Plain
Sustained Observatory area site, as estimated volumetric flux (EVF), dry weight
(DW) and organic carbon flux (CORG).

Year NAO index AMO index EVF
(mL m−2 d−1)

DW
(mg m−2 d−1)

CORG
(mg C m−2 d−1)

1985 −3.09 −0.22 – – –
1986 3.14 −0.21 – – –
1991 1.14 −0.21 – – –
1994 2.86 −0.18 2.73 52.5 –
1996 −1.98 −0.08 3.20 39.8 –
1997 −0.93 −0.04 1.61 55.7 –
2011 2.95 0.14a 1.67 44.3 3.14
2012 −0.25 0.14a 3.68 72.4 7.50
2013 0.90 0.16a 1.79 34.7 2.20
2016 1.70 0.17a 3.45 69.1 4.12

a 77-month, centred, running mean based on Kaplan sea surface temperature
dataset, see text for detail.

Fig. 4. Long-term variation in Atlantic climatic conditions, illustrated as: (upper panel) winter North Atlantic Oscillation index (station-based); and (lower panel)
Atlantic Multi-decadal Oscillation index (77-month, centred, running mean based on Kaplan sea surface temperature dataset, see text for detail).
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3.2. Temporal variation in amphipod species diversity

Diversity measures (Sest, Exp[H′], 1/λ; Table 4; Supplementary
Table 1) exhibited no significant correlation (Spearman’s rank,
p > 0.5) with soak time. Soak time was not correlated with catch size
(Spearman’s rank correlation, 0.252, p = 0.291), nor was there a sig-
nificant difference in catch size between trap designs (catch size
transformed y = log10[x]; Welch’s Test, F[2, 2.98] = 1.88, p = 0.296).
Catch size, diversity measures (S total, and 0D, 1D, and 2D for 500 and
1000 individuals), and MDSx as a summary of species composition
exhibited no statistically significant differences (p > 0.05) between
phytodetritus seasons.

Estimated species richness of the scavenging amphipod assemblage
by individual sample (rarefied and extrapolated to 500 individuals) and
by samples aggregated to years (rarefied and extrapolated to 1000 in-
dividuals) was generally higher in the early part of the time series
(1986–1997; Sest 500 = 6.8–12.7, Fig. 5a, Sest 1000 = 7.0–11.4,
Fig. 5b) than the recent sampling (2011–2016; Sest 500 = 5.6–7.7,

Fig. 5a, Sest 1000 = 6.0–8.2, Fig. 5b). Estimated species richness ag-
gregated to year (Sest 1000) exhibited a significant negative correlation
with the AMO index (Spearman’s rank, rs[17] = 0.593, p = 0.007),
other diversity measures (Exp[H́], 1/λ) did not (p > 0.08;
Supplementary Fig. 7).

When ‘cool’ and ‘warm’ phase AMO were used as a categorical
variable, amphipod species richness varied significantly between
phases (Mood’s median test, χ2[3] = 12.44, p < 0.001). Estimated cool
phase richness for 1000 individuals is 9.7 (8.4–10.9, 95.5% Wilcoxon
signed rank confidence interval), for warm phase, 6.4 (6.0–7.1, 94.1%
confidence interval).

Species composition was assessed via non-metric multidimensional
scaling ordination of Bray-Curtis dissimilarity based on sample-standardised
data (i.e. percentage composition). When ‘cool’ and ‘warm’ phase AMO
were used as a categorical variable, amphipod species composition varied
significantly between phases (ANOSIM, R = 0.539, p < 0.001). No sig-
nificant variation was apparent when positive and negative values of the
NAO were used as a categorical variable.

Table 4
Diversity of amphipod taxa in samples collected from the Porcupine Abyssal Plain Sustained Observatory area between 1985 and 2016. Samples are coded A-S (see
also Table 1 and Fig. 1). N, number of specimens recovereda; S, number of species recovereda; diversity indices: Sest, estimated species richness; Exp(H′), exponential
form of the Shannon index; 1/λ, inverse form of Simpson’s index, are provided as rarified/extrapolated to 500 or 1000 individuals on a per sample (s) or per year (y)
basis (see also Supplementary Table 1).

Sample Year N S Sest s500 Exp(H') s500 1/λ s500 Sest s1000 Exp(H') s1000 1/λ s1000 Sest y1000 Exp(H') y1000 1/λ y1000

A 1985 1836 11 8.9 4.9 4.3 9.9 5.0 4.3 9.9 5.0 4.3
B 1986 657 7 6.8 3.5 2.9 7.0 3.5 2.9 7.0 3.5 2.9
C 1991 1284 10 8.5 5.1 4.5 9.3 5.1 4.5 9.3 5.1 4.5
D 1994 826 7 6.9 2.3 1.6 7.0 2.3 1.6 9.7 2.8 2.0
E 1994 1395 10 9.4 2.9 2.1 9.9 2.9 2.1
F 1996 938 9 8.2 3.4 2.7 9.1 3.4 2.7 9.1 3.4 2.7
G 1997 1059 11 10.2 4.7 3.4 10.9 4.7 3.4 11.4 5.3 3.8
H 1997 558 13 12.7 6.2 4.4 14.8 6.3 4.4
I 1997 1714 11 9.0 3.9 2.8 10.0 3.9 2.8
J 1997 1911 10 8.8 3.9 2.8 9.4 3.9 2.8
K 1997 996 10 8.5 6.1 5.7 10.0 6.2 5.8
La 2011 32,793 8 5.7 3.2 2.5 6.2 3.2 2.5 6.3 3.0 2.2
Ma 2011 43,238 7 6.0 2.8 2.0 6.5 2.9 2.0
N 2012 1390 6 5.6 1.7 1.3 6.0 1.7 1.3 6.6 2.4 1.8
O 2012 8158 10 5.8 2.5 1.9 6.6 2.5 1.9
P 2013 2750 7 6.4 2.8 2.3 6.7 2.9 2.3 8.0 3.7 2.7
Q 2013 3645 9 7.7 4.1 3.0 8.2 4.1 3.0
R 2016 208 6 6.0 3.6 3.1 6.0 3.7 3.2 6.0 2.9 2.5
S 2016 659 6 5.8 2.6 2.3 6.0 2.6 2.3

a Note samples collected in 2011 were subsampled to 1/8th for enumeration of species other than Eurythenes spp., N and S values are full sample approximations.

Fig. 5. Scavenging amphipod species richness at PAP-SO as rarified/extrapolated to 500 or 1000 individuals. Sest, estimated species richness by (A) individual
samples (s) and (B) samples aggregated to years (y).
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Paralicella tenuipes is identified as the key characterising species of the
cool phase, and P. caperesca as the key characterising species of the warm
phase (SIMPER). Amphipod faunal composition (as summarised by the
MDSx variable) exhibited a significant correlation with the AMO index
(Spearman’s rank, rs[17] =−0.754, p < 0.001). The relative abundance of
P. tenuipes exhibited a significant negative correlation with the AMO index
(Spearman’s rank, rs[17] =−0.583, p= 0.009), and the relative abundance
of P. caperesca exhibited a significant positive correlation with the AMO
index (Spearman’s rank, rs[17]= 0.759, p < 0.001). Fig. 6 illustrates this in
a single plot of the non-metric multidimensional scaling ordination showing
the scavenging amphipod assemblage composition by year of observation.
The bubble plot symbols are scaled to the relative abundance of the two key
species Paralicella tenuipes and P. caperesca and Years appear to group (on
the x-axis) to periods of positive (warm) and negative (cool) phases of the
AMO.

For the years where matching data were available, there is a ne-
gative trend between annual flux at 3000 m and amphipod diversity. All
diversity parameters (n = 500 and n = 1000 0D, 1D, and 2D) were
negatively correlated with all flux measures (EVF, DW, and CORG),
however, these correlations were only statistically significant in the
case of EVF values (rs[17] = ≥ −0.655, p-adjusted ≤ 0.018), i.e. am-
phipod diversity was lower in high EVF years.

4. Discussion

Our results indicate that the dominant species of scavenging am-
phipod attracted to baited traps at the Porcupine Abyssal Plain
Sustained Observatory changed over time. This can be summarised by
variations in dominance between the species Paralicella caperesca,
Paralicella tenuipes, and Abyssorchomene chevreuxi from samples col-
lected over> 30 years, with some years having notably higher or lower
percentage abundances of the giant amphipod genus Eurythenes.

There is a marked change in amphipod community composition in
the year 2011, when the total number of amphipods caught in the traps
was also much higher than any other year (32,793 and 43,240). The use
of a splitter to analyse samples is methodologically sound (Dahiya,
1980; Griffiths et al., 1984; Horton et al., 2013), however, it may have
resulted in some rarer species being unrecorded in these samples. This
may, in part, explain the lower number of species found in these traps.
There are no obvious explanations to account for these very high

numbers, but in addition to having the highest overall abundances, this
year also recorded a change in the dominant species from Paralicella
spp. to A. chevreuxi. Community compositions in 2011 and 1991 have
low similarities to other years but have a high resemblance to one an-
other, potentially indicating that similar environmental factors may
have been acting in those years. While we cannot be certain what
caused the changes in this case, drastic changes in community com-
position have been reported previously, resulting from catastrophic
events. Frutos and Sorbe (2017) recorded a temporal dominance of the
amphipod scavenger Tmetonyx similis (Sars, 1891) in the Capbreton
Canyon, likely related to increased amounts of local dead fauna caused
by a turbidity event. The greatly increased abundances seen in 2011
could be a result of catastrophic disturbances, as major slope failures do
occur at PAP-SO from the abyssal hills (Ruhl, 2013) and such events
would potentially cause extinctions of local invertebrate fauna. While it
is well-known that fisheries discards have impacts on local scavenging
faunas (Depestele et al., 2019) there are no commercial demersal
fishing activities in the vicinity of PAP-SO, the nearest being on the
Porcupine Bank around 2000 m (Priede et al., 2011).

Our results indicate the existence of a possible ‘regime shift’ in
scavenging amphipod communities following a ‘regime shift’ in surface
ocean biological communities (the amphipod food source), which is
driven by a phase shift in Atlantic climate (from cool to warm AMO).
Changes in the carbon flux from the upper oceans have both direct and
indirect influences on the scavenging community (Duffy et al., 2012).
Direct impacts may be through changes in food supply (abundance and/
or quality), as not all scavenging amphipods are obligate necrophages
and may use phytodetritus or macrophytes as a food source (Lawson
et al., 1993; Dauby et al., 2001; Blankenship and Levin, 2007). Indirect
impacts include changes in the upper ocean pelagic community com-
position resulting in altered quantities and qualities of large food-falls.
It is possible that other benthos at the PAP-SO have followed the same
pattern and this warrants further investigation. Similar effects have
been noted more widely in both pelagic and benthic systems (Edwards
et al., 2013; Alheit et al., 2014; Harris et al., 2014; Smith et al., 2016).
In the North Sea, long-term climate cycles, e.g. North Atlantic Oscilla-
tion and Atlantic Multi-decadal Oscillation have been shown to affect
the benthos (Dippner et al., 2014; Birchenough et al., 2015), pelagic
systems and fish stocks (Gröger et al., 2010; Auber et al., 2015).

Five replicate traps from 1997, revealed differences in the species
compositions and warrant some discussion here. In three of the five
1997 samples, P. tenuipes was the dominant species. In one sample
(Sample H, Station 13077#35), the dominant species was P. caperesca
with P. tenuipes representing a much smaller proportion of the sample
(Table 3b). Additionally, in this trap, A. gerulicorbis is the dominant
species of Abyssorchomene, whereas in other samples this species con-
tributes much smaller proportions. There is also a greater representa-
tion of the rarer species in this trap, including Haptocallisoma lemarete,
Valettietta gracilis, Valettietta lobata, Cyclocaris lowryi, Calliopiidae sp.
DISCOLL_PAP_13077 and Paracentromedon sp. DISCOLL_PAP_52216.
Sample G (Station 13077#4, collected in 1997) has a similar compo-
sition as sample H but the dominant species is P. tenuipes. Both of these
samples differ from others in the dataset as they were simple pipe traps
set at three different heights above the seabed (450, 1050 and
2100 mm), rather than being comprised of a benthic and suprabenthic
trap. These two samples also had the longest soak times of the whole
dataset (84 and 104 h). An additional sample with a long soak time also
had a higher proportion of A. gerulicorbis (Sample Q, 62 h). It is likely
that these factors have resulted in the markedly different species
compositions recorded. Sample K (13078#22, collected in 1997) also
differs in some respects in having a more even species composition,
with the four important species (P. tenuipes, P. caperesca, A. chevreuxi,
and Eurythenes spp.) each contributing about 20% to the catch. This
trap had the shortest soak time of the whole dataset with just six hours
on the seabed. In such a short time span, the trap will not have ex-
perienced a full tidal cycle and the odour plume is unlikely to have

Fig. 6. Non-metric multidimensional scaling ordination of PAP-SO scavenging
amphipod assemblage composition by year of observation. Symbols are scaled
to the relative abundance of two key species, Paralicella tenuipes (red) and P.
caperesca (green). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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travelled as far as for other traps, limiting the number of amphipods of
different species attracted to the trap. The different species attracted are
likely to have different swimming speeds and chemosensory abilities
and thus distances of attraction to the bait.

Paralicella spp. have been identified as specialist scavengers which
often monopolise bathyal and abyssal food-falls (Duffy et al., 2012,
2016). Their life cycle is closely linked to an input of food, allowing
them to reproduce quickly in the presence of increased nutrients and
therefore dominate scavenging amphipod assemblages at large food-
falls (Duffy et al., 2016). It is possible that in the years when Paralicella
spp. are not dominating the assemblage, other species with increased
plasticity in their diet, such as Eurythenes spp. (Janßen et al., 2000;
Blankenship and Levin, 2007) and Abyssorchomene spp. (Dauby et al.,
2001) have increased success. The proportion of a population drawn to
bait may correspond with that species’ dependence on food-falls and the
availability of other food sources (Janßen et al., 2000), providing a
possible reason for the increased prevalence of Abyssorchomene spp. in
years with increased organic matter. In 1991 and 2011, there were
significant community shifts that resulted in Abyssorchomene spp. be-
coming the dominant species in these samples. Frigstad et al. (2015)
report short bursts of unusually high sediment flux during summers of
2004, 2009 and 2012. It is possible that the influx of carbon in 2009,
led to increased food availability for abyssal scavengers and potentially
increased success for Abyssorchomene spp. compared with Paralicella
spp. owing not only to the ability of Abyssorchomene to include organic
matter in their diet (Dauby et al., 2001), but also to have multiple
broods in a lifetime, an iteroparous reproductive strategy that takes
advantage of increased nutrient input (Duffy et al., 2013).

There was a significant decline in sample species diversity with
increasing organic matter input (as measured by EVF). Obligate ne-
crophages may have less success in these years compared with fa-
cultative necrophages with more diverse diets (Janßen et al., 2000).
Samples from 1991 and 2011 are dominated by Abyssorchomene spp.
which have the ability to utilise organic matter as a source of nutrients
(Dauby et al., 2001), and are also able to respond by reproducing
quickly and at earlier instars than the slower growing, semelparous
obligate necrophages (Duffy et al., 2016). It should also be noted that a
similar trend is seen in years of low organic input to the benthos when
the samples are less diverse, likely as a result of the dominance of ob-
ligate necrophages, which have experienced no disruption to their
stable food source.

The first changes associated with the Amperima event were recorded
in 1996 (Billett et al., 2001; Billett et al., 2010). The mean annual vo-
lumetric flux recorded in 1994 was the third highest, which may have
resulted in the rapid changes in the benthic environment associated
with the Amperima event. Studies at Station M in the Pacific Ocean have
also observed changes in megafaunal community composition between
the years 2006–2012 (Kuhnz et al., 2014). It was noted that at the start
of that study, the diversity (as measured using Simpsons Diversity
Index) was high, although the density of organisms was low. Over an
18-month period starting in 2011, there was an order of magnitude
increase in mobile organisms, and in 2012 four holothurian species
recorded the highest densities since the start of investigations in 1989.
These changes were correlated with a variation in organic flux levels
and are remarkably similar to those observed during the Amperima
event in the North Atlantic (Billett et al., 2001; Billett et al., 2010).

There is evidence that carbon flux to the deep seafloor acts as both a
food store and carbon sink hence the effect of increased influx may
manifest years later (Jones et al., 1998; Alve, 2010). It is likely that the
community changes caused by an input of organic matter will persist
for some time after an influx due to the slow response of deep-sea or-
ganisms to environmental change (Seibel and Walsh, 2003) and the
persistence of organic matter in deep sediments (Jones et al., 1998;
Alve, 2010). It is possible that any changes to the scavenging amphipod
community resulting from this input may not be apparent immediately,
as the deep sea is often slow to react to changes as a result of low

temperatures and limited food supply impacting the metabolism of
deep-sea organisms (Janßen et al., 2000; Hoegh-Guldberg and Bruno,
2010). Ruhl (2007) and Ruhl and Smith (2004), reported that the
changes in larger epifaunal megafauna populations at Station M in the
Pacific, lag the particulate flux by 11–22 months, while Drazen et al.
(2012) noted that scavenging grenadier populations at the same site
lagged by about 6 months relative to the pelagic nekton populations,
indicating that scavengers respond more quickly to trophically more
important carrion (albeit likely through migration, rather than popu-
lation growth in this case). The possible links (and time-lags) between
changes in scavenging amphipod populations at the PAP-SO and pelagic
nekton populations have not been investigated here, but should be in-
vestigated in future studies.

Soak time was evaluated as part of our study owing to evidence of a
temporal succession of scavenging amphipods on carcasses (Thurston,
1990; Jones et al., 1998), although we have found no statistically sig-
nificant impact of soak time on the scavenging community composition.
Increased soak time may result in the arrival of facultative or more
specialist necrophages. These less common species (e.g. Valettietta spp.)
may not possess the same well-developed sensory organs as found in the
obligate necrophage species or may be reacting to a different spectrum
of chemical cues that are dependent on ‘ageing’ of the food fall, and
therefore arrive at the bait later (Thurston, 1990). Traps that are left on
the seabed for longer are therefore more likely to attract these species,
and there is evidence of this in our dataset, with the traps having the
longest soak times (G, H, and Q) also attracting the largest numbers of
specimens of Valettietta gracilis (13, 26, and 91 respectively). These
same three traps also attract the largest numbers of A. gerulicorbis,
possibly indicating that this species is also a facultative scavenger.

The season when sampling took place is linked to the organic matter
input due to the seasonal cycle of phytoplankton blooms in the upper
ocean (Frigstad et al., 2015). Similarly, it has been shown that there is a
seasonal influence on catch size in arctic regions (Nygard et al., 2012).
It was therefore important that this factor is excluded as having a sig-
nificant impact on the community studied here. Our analyses revealed
no significant influence of season on community composition. Both
benthic and suprabenthic traps were used in this study, but the results
were reported as combined specimen numbers for each station. The
numbers of individuals in the suprabenthic traps were much lower than
in the benthic traps, and rarer species were absent. An in-depth analysis
of the species found in the suprabenthic versus benthic traps was not
possible as detailed data were only available for certain years.

5. Future work

It would be interesting to investigate further what differentiates P.
tenuipes and P. caperesca. They are very similar morphologically but do
have eyes that are strikingly different in size and shape, and can be
easily separated both morphologically (Shulenberger and Barnard,
1976) and molecularly (Ritchie et al., 2017). P. caperesca populations in
the North Atlantic have been studied in detail (Duffy et al., 2016), but
its congener, P. tenuipes, has not. Gut content analyses, stable isotope
analyses and detailed biochemical composition could help determine
differences in diet and variations in natural history and ecology of these
two species. The genus Eurythenes present at the PAP is now known to
comprise four species, one of which is new to science (Horton et al.,
2020a), and the species composition will need to be reassessed to be
included in any future analysis of this time series. This will require the
re-identification of the 5754 specimens reported in this study which
until now were recorded as Eurythenes gryllus, a species that is con-
firmed only from Arctic and Antarctic waters but is not found at the
PAP (d’Udekem d’Acoz and Havermans, 2015; Horton et al., 2020a).

It will also be useful to include biomass as an additional measure in
any future studies of scavenging amphipods since there are marked
differences in the body sizes of the species attending baited traps.
Hatchlings of the Eurythenes specimen (body length 120 mm, attributed
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to E. gryllus by Thurston and Bett (1995) but not belonging to that
species), had a mean length of about 11 mm. The maximum body
length reported for Abyssorchomene abyssorum is less than 17 mm (Duffy
et al., 2013), for Abyssorchomene distinctus (Birstein and Vinogradov,
1960), 19 mm (Duffy et al., 2016) and it is unlikely that species of
Paralicella would exceed 20 mm (Thurston, 1979). The respective
contributions of these different species to the amount of carbon con-
sumed could be analysed by making simple measurements of volu-
metric contribution of each species to the whole sample.

While this study has provided a first look at the variations of an
abyssal scavenging amphipod community over time, it will be critical to
continue observing these populations for the next decade to see if the
AMO switches back to ‘cool’ phase and whether the amphipod species
composition changes as a consequence. A fundamental question that
then arises, but still remains elusive, is when will the current warm
phase of the AMO begin to decline (~2025 based on a 60-year cycle)
and will it be significant enough to trigger habitat switching in the
North Atlantic and associated shelf seas, or will external climate
warming override this natural signal? The continued collection and
maintenance of long-term time series at PAP-SO and other abyssal sites
are important to enable the monitoring needed to detect predicted
changes in benthic biomass related to climate change (Jones et al.,
2014).

6. Conclusions

Our analyses have revealed shifts in scavenging amphipod com-
munities in relation to changing levels of organic matter deposited in
the abyss. This shift manifests itself in a remarkable change to the
dominant species, from obligate necrophages such as Paralicella spp.,
with semelparous reproduction to Abyssorchomene spp. with a more
varied diet and iteroparous reproduction and therefore perhaps more
able to take advantage of increased food availability from organic flux
input. Samples are less diverse in those years with significantly in-
creased organic matter due to a single species dominating the sample.
Trap type, season, and soak time have no significant impact on the
diversity, number of species or community composition at the PAP,
although detailed examination of the composition shows some inter-
esting patterns that may become clearer with further samples and a
longer time series.
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