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Abstract— The US Arctic and sub-Arctic regions are rapidly 
changing, creating potentially large impacts to marine 
ecosystems and ecosystem services. However, much of the 
current observing technology is ill suited to fully quantify these 
dynamic changes. The harsh, remote environment, expansive 
area, and extremely fine scale features present clear barriers to 
the efficient collection of effective environmental intelligence. In 
order to meet these challenges, NOAA’s Pacific Marine 
Environmental Laboratory, with support from Ocean and 
Atmospheric Research Division, has created the Innovative 
Technology for Arctic Exploration (ITAE) program to facilitate 
the development of new autonomous platforms and high-
resolution sensing technologies that may be able to address this 
critical gap in mission capabilities. During the program’s 
primary field testing year, ITAE successfully completed two 
large-scale research missions in the Bering and Chukchi Seas 
involving multiple new Arctic-capable platforms, including the 
Saildrone unmanned autonomous surface vehicle (Saildrone, 
Inc.), the Profiling Crawler (PRAWLER; NOAA-PMEL), a 
moored instrument drastically improving vertical resolution of 
data collection; and the Expendable Ice Tracking (EXIT) Floats, 
which allow for under-ice data collection (NOAA-PMEL). 
Through these platforms, ITAE also tested a variety of novel 
sensing technologies, such as the recently developed microfluidic 
nitrate sensor, the Lab-on-a-Chip (National Oceanography 
Centre, University of Southampton). Together, these 
developments helped to assess important and previously 
inaccessible aspects of the sea ice melt season. However, 
important technical challenges remain, including autonomous 
ecosystem assessment tools that could effectively monitor and aid 
management of the region’s multi-billion dollar annual 
commercial and subsistence fishing industries.       
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I. INTRODUCTION 
The US Arctic, comprising the Bering, Chukchi, and 

Beaufort Seas, is home to one of the world most highly 
productive ecosystems. Alaskan fisheries make up more than 
half of the total commercial fish catch for all US waters, 
comprising a multi-billion dollar annual industry. The region is 
also an important cultural resource for indigenous 
communities, where roughly 95% of households participate in 
subsistence fishing. However, these systems are currently in 
the midst of rapid environmental changes [1, 2]. 

Arctic change has been rapid and extensive over the last 
several decades, especially in comparison to low–latitude 
areas. Since the 1980s, sea-ice thickness, persistence, and 
coverage have declined dramatically in response to a warming 
climate, with overall sea-ice volume losses averaging ~3000 
km3 each decade [3]. Changes in sea ice dynamics and 
warming affect a broad spectrum of the Arctic system, 
including ocean physics, chemistry, and food webs [1-2, 4-8], 
and are reflected more widely in the weather patterns at low 
latitudes [9-15]. The current trends are expected to continue in 
the future, intensifying the impacts of Arctic change on the 
United States and other parts of the globe [11]. 

These rapid changes are bringing the Arctic to the forefront 
of US security and stewardship interests. In 2013, the White 
House released the US National Strategy for the Arctic Region 
[16]. The National Strategy emphasizes the need to advance 
national security; responsibly manage resources; protect the 
environment; and support indigenous communities, using the 
best available scientific information. The National Oceanic and 
Atmospheric Administration (NOAA) and its partners support 
these decision making processes by acting as the US 
environmental intelligence agency, transforming shared 
international data, analysis, modeling, and assessment into 
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actionable information for responsible Arctic resource 
management [17].  

 While scientific understanding of the Arctic region is 
advancing rapidly, much of our current technological 
capabilities are ill-suited to observing these dynamic changes. 
The harsh, remote environment, expansive area, and extremely 
fine scales of change represent clear barriers to cost-effective, 
efficient collection of data through solely remote sensing and 
traditional field approaches (e.g., aircraft, ships, and moorings). 
Autonomous vehicles have the potential to fill these gaps, as 
identified by many other programs [18-22]. However, some of 
these platforms require additional development to withstand 
the extreme conditions of the Arctic environment. 

 In order to meet these challenges, the NOAA Office of 
Oceanic and Atmospheric Research (OAR) has provided 
support to the Pacific Marine Environmental Laboratory 
(PMEL) to create the Innovative Technology for Arctic 
Exploration (ITAE) Program.  The program mission is to 
facilitate development of new, Arctic-capable autonomous 
platforms and high-resolution sensing technologies to expand 
NOAA’s current operational capabilities. 

Here, we describe the current activities of the ITAE 
Program. First, we discuss current changes occurring in the 
Arctic, and why autonomous platforms and high-resolution 
data collection are ideally suited to measuring and monitoring 
these changes. Next, we highlight the current lines of effort of 
the ITAE program, including the two successful large-scale 
field missions of our inaugural field year, as well as the 
laboratory testing of multiple novel sensors and platforms. 
Lastly, we describe continuing research and development, and 
the new ways the ITAE program continues to explore 
innovative technologies for Arctic research.  

II. KEY ELEMENTS OF ARCTIC CHANGE 
Changes in sea ice are the most visible manifestations of 

climate change in the Arctic. Clear decreases in sea-ice extent, 
concentration, thickness and volume are shown in the satellite 
record [23-27]. Sea ice also serves as a sensitive indicator of 
climate dynamics in the area as a whole [28]. Sea ice and 
glacial melt increase fresh water inputs to the Arctic Ocean 
[29-34], influencing circulation patterns and ocean heat 
cycling. Greater open water area allows for greater heat 
exchange with the atmosphere. Together, changes in ocean 
circulation and heat inventories cause broad changes to 
weather patterns extending well beyond the Arctic region [35-
36]. 

The Arctic carbon system is also rapidly changing [37]. 
Like ocean heat, increased open water area allows for greater 
exchange of CO2 between the atmosphere and upper ocean, 
contributing to accelerating rates of ocean acidification and 
decreases in ocean pH [38]. This process is exacerbated by 
increasing concentrations of sea ice and permafrost melt and 
river waters, which are naturally low in pH compared to the 
surface ocean [30, 39]. Warming ocean temperatures also 
destabilize marine gas hydrates, potentially increasing ocean 
acidification and oxygen depletion in the marine environment 
[40]. Greater open water area and increased storminess are also 

contributing to enhanced upwelling events, which bring can 
bring low pH waters to the ocean surface [41]. 

Ocean warming and decreases in pH can have large, 
cascading impacts Arctic food webs [42], potentially impacting 
human ecosystem services. At the base of the ecological 
system, the timing and location of phytoplankton production 
and respiration are tightly linked to the seasonal sea-ice cycle 
[43-46]. Changes in phytoplankton production also impact the 
energy pathway to benthic biological systems and sediments as 
well as higher trophic levels, including fish, seabirds, seals, 
walrus, and whales [42]. 

The US Arctic supports some of the largest commercial and 
subsistence fisheries in the world. Warming, sea-ice losses, and 
changes in the carbon system may reduce recruitment of 
juvenile walleye Pollock (Theragra chalcogramma) by 
midcentury [47]; restructure the populations and productivity 
of benthic ecosystems [42] and reduce growth and survival of 
king and tanner crabs (Paralithodes camtschaticus and 
Chionoecetes bairdi, respectively) [48]; impact seabird 
populations [43, 49]; reduce viable habitat for ceteceans, 
pinnipeds, and polar bear populations [5, 50, 51]; and 
dramatically increase economic and social risks for coastal 
communities in rural southeast and southwest Alaska [2] and 
potentially in lower latitude areas [52]. 

III. DEVELOPMENT OF NEW TECHNOLOGIES  
Given these key elements of Arctic change, it will be 

critical to monitor changing heat, salt, and carbon fluxes as 
well as ecosystem variables in order to effectively manage 
Arctic Ocean resources. A critical challenge to this mission is 
that this area is both vast and complex, necessitating data 
collection at small scales over very large areas [e.g., 53]. The 
coastline of the state of Alaska alone is more than 10,000 km—
more than the combined length of the East, West, and Gulf 
coasts of the continental US [54]. 

These scientific needs make it clear that the ideal platforms 
and sensors for studying Arctic change should be able to 
withstand multiple long deployments that cover large areas and 
collect high-resolution data. Some current tools can selectively 
meet these needs; for example, remote sensing techniques like 
satellite observations can collect data over extremely large 
areas and at high resolution for some surface variables, 
although weather patterns and highly turbid coastal areas can 
be challenging [55-58]. From another perspective, traditional 
ship-based observations can collect extremely diverse data at 
high resolution from expansive areas, but high costs limit the 
overall duration and frequency of these missions [56, 59]. 

According to these criteria, autonomous moorings, gliders 
and drones, as well as new sensors that detect small changes 
and collect data at rapid intervals may fill this important niche, 
especially as payload, power, and sensor capacity increase [18-
22, 58-60]. However, many of the currently available and new 
platforms and sensors are designed for conditions more typical 
of the tropics, where temperatures are warm, platform 
accessibility is simple, and mechanical hazards like sea ice and 
biofouling typical of highly productive sub-polar systems are 
fewer. 



The ITAE Program works under a tiered development 
system, where we integrate novel sensing technologies with 
innovative platforms in late-stage development; adapt existing 
technologies for use in the expansive, harsh, and remote Arctic 
environment; and engage in longer-term development 
initiatives designed to address underserved technological 
needs. The central goal is to efficiently develop and transfer 
this technology for use in a broad array of conditions and a 
variety of purposes by the wider community. 

During 2015, the program successfully completed two 
large-scale field missions, including a three-month Bering Sea 
deployment of two Saildrones, novel wind- and solar-powered 
unmanned surface vehicles, and a two-month, multi-platform 
integrative project in the Chukchi Sea. We also investigated 
several new sensors for their suitability in the Arctic 
environment and use on autonomous platforms, including the 
carbon PRAWLER (Profiling Crawler), an autonomous 
crawling carbon instrument for moored systems; the Lab-on-a-
Chip (LOC), a nitrate sensor from the class of recently 
developed fluidic chemical analysis microplates; a Simrad 
Wide-Band Acoustic Transceiver (WBAT), a new-generation 
echosounder for moored and mobile autonomous platforms; 
and the novel Expendable Ice Tracking (EXIT) Floats for 
under-ice sampling. 

A. 2015 Field Program: Bering Sea Surface Mapping 
During 2015, NOAA OAR Laboratories and the ITAE 

program worked with Saildrone, Inc. under a Cooperative 
Research and Development agreement to develop the Saildrone 
platform for high-latitude research purposes. The primary 

advantage of the Saildrone is its speed, endurance, and 
maneuverability, which allow launch and recovery from shore 
and enable extended research missions, an important capability 
gap in current unmanned surface vehicles and a critical mission 
capability for Arctic research and monitoring. 

This collaboration resulted in several important 
modifications of the Saildrone platform and the associated 
sensors [61]. One of the key variables for a high-latitude 
mission in the Pacific Arctic was mitigation of potential 
biofouling, given the region’s high rates of primary production. 
While some sensors can be purchased with wipers, copper 
mesh, or other biofouling deterrents, a particular concern for 
the north Pacific is gelatinous zooplankton and cnidarian 
biomass [62-66]. Some modifications to the central Saildrone 
sampling intake were made in order to deter clogging [61]. 
Another concern was power generation, as solar energy can be 
problematic in areas where daylight hours are limited and 
weather patterns limit direct sunlight. 

Two Saildrones with basic sensor payloads were deployed 
in the Bering Sea in mid-April and recovered 97 days later in 
late July [Fig. 1, 2]. During this time, the Saildrones collected 
approximately 2 million samples per day. One- and 10-minute 
averaged data was telemetered to shore to allow for responsive 
sampling, with higher-frequency data stored on board. Owing 
to the platform’s speed and maneuverability, we tracked two 
important fine-scale features, including a sea-ice melt signature 
as well as the edge of a river plume [61, 67]. Overall, the 
Saildrones each covered a remarkable 7800 km [Fig. 2].  

B. 2015 Field Program: Multiplatform Research in the 
Chukchi Sea 
Due to the remote and harsh environment of the Arctic, 

research activities in this region are greatly enhanced through 
collaborative efforts and partnerships that leverage 
complementary capabilities and resources. In 2015, the ITAE 

Fig. 2. SD-128 Track through Bering Sea during the 2015 Surface 
Mapping Mission.  

Fig. 1. Saildrone SD-128 during the 2015 Bering Sea Surface Mapping 
mission. Photo by Mark Frydrych, NOAA NMFS/AFSC. 



program partnered with the NOAA’s Office of Ocean 
Exploration and Research and the US Coast Guard (USCG) to 
deploy a radiation mooring and two Wave Gliders in the 
Chukchi Sea [Fig. 3]. Integrating the data from these two 
unique platforms allowed for the assessment of physical, 
chemical, and biologically important variables in the 
technically challenging seasonal ice zone. 

As part of this project, ITAE deployed a variety of new 
instrumentation on a moored platform, including the carbon 
Profiling Crawler (PRAWLER) [68] [Fig. 3]. The PRAWLER 
uses surface wave energy to power a profiling instrumentation 
package along a mooring line, allowing for the collection of 
profile data over long deployments, and has control of 
sampling frequency in time and depth. The PRAWLER builds 
on a continuing development effort at PMEL to reduce the cost 
and complexity of moored platforms and increase vertical 
sampling resolution. 

ITAE also collaborated with the National Oceanography 
Centre at the University of Southampton to test the Lab-On-A-
Chip (LOC), a new, smaller (12 cm x 10 cm) microplate nitrate 
sensor which conducts in-situ nutrient chemistry with on-board 
reagents and standards [69] [Fig. 3]. At present, microplate-
sensors like the LOC are revolutionizing the collection of 
ocean chemical data by providing in-situ standards for data 
calibration and monitoring of sensor drift. However, the LOC 

is still in its early development phases, and operates at a 
relatively low sampling frequency. By combining the LOC 
with commercially available, uncalibrated high-resolution 
sensors, ITAE generated a high-resolution, calibrated nutrient 
data stream. 

In addition to the radiation buoy, surface data was collected 
from two autonomous, robotic surface vessels, the PMEL 
Carbon Wave Glider and Ecosystem Wave Glider [Liquid 
Robotics] [Fig. 3]. The surface data collected by these 
instruments over a broader area will provide important insights 
into the evolution of the upper water column after ice retreat, 
including changes in heat and carbon fluxes that result from 
freshwater stratification [70]. 

An exciting innovation deployed during this project were 
the PMEL Expendable Ice Tracking (EXIT) Floats, a new 
conceptual design for under-ice data collection [Fig. 4]. EXIT 
floats are initially anchored to the ocean bottom, and a timed 
release allows the instrumented floats to surface under the ice. 
The float tracks important physical and biological variables 
during the ascent through the water column and under the ice 
matrix until it encounters open water conditions and transmits 
data. Data transmission in the marginal sea-ice zone continues 
through the end of the sensor’s battery life. One challenge to 
this design is the mechanical hazards of unstable ice, such as 
potential crushing between rafting floes. Two prototypes were 

 
Fig. 3. Four of the ITAE technologies used during the multiplatform Chukchi Sea research mission being prepared for deployment via the US Coast Guard 
Cutter Healy. (1) Radiometer buoy. (2) Wave glider. (3) Profiling Crawler (PRAWLER). (4) Lab-on-a-chip (LOC) microfluidic nitrate sensor. Photo by Ryan 
Fitzler, National Geo-spatial Intelligence Agency (NGA).  



deployed during this mission, one of which is now transmitting 
data. The broader vision is the deployment of a suite of floats 
that will be released periodically throughout the ice melt 
process.  

Together, these technologies will be able to provide 
information about the biophysical impacts of sea-ice melt on 
the Chukchi Sea ecosystem by monitoring the evolution of key 
physical, chemical, and biological variables of the upper water 
column beginning during ice retreat and through the summer. 
Data collection and analysis are ongoing at the time of this 
writing. 

IV. CONTINUING INNOVATION 
The central goal of the ITAE program is to develop new 

platforms and sensing technologies that fill gaps in current 
operational capabilities. The two missions described above 
were designed to deploy highly developed technologies in the 
first tier of operational readiness. In the next stage, ITAE is 
working with other sensors and platforms in earlier stages of 
development. 

Through a collaboration with NOAA’s National Marine 
Fisheries Service, ITAE is working to develop the mooring-
based Simrad WBAT echosounder for deployment on the 
Saildrone, and will be conducting a test mission in the coming 
year. This research prototype could represent an important new 
capability for annual fishing surveys. This technology could 
provide unprecedented reconnaissance data that could better 
guide ship-based teams to more efficient survey formats, as 
well as extend the spatial and temporal coverage of the core 
surveys. Additional capabilities being designed for the 

Saildrone include a methane / CO2 analytical system for ocean 
acidification surveys in the Arctic.  

There are also important gaps in the current capabilities of 
autonomous vehicles that will require focused, long-term 
development. For example, unstable ice floes represent 
extreme risks for autonomous vehicles; historically, this has 
limited studies of the process of ice melt and under-ice 
dynamics. In addition to the mechanical hazards of sea ice, 
under-ice navigation represents an enormous challenge for 
vehicles usually directed by satellite communication. 

ITAE has made a preliminary investigation into this 
problem by investigating the principle and effectiveness behind 
the EXIT Float, and many programs and organizations are 
pursuing these problems from a variety of perspectives. For 
example, the Marginal Ice Zone project, led by the Office of 
Naval Research and the University of Washington Applied 
Physics Laboratory, used acoustic point sources deployed in 
the sea ice to guide under-ice glider arrays [71]. Ice-capable 
surface and sub-surface vehicles will be an important 
breakthrough for the Arctic research community in the coming 
years. 

Building a better understanding of climate change impacts 
on Arctic ecosystems will continue to be a challenging and 
expensive undertaking, especially through these early phases of 
research and development. However, some of this effort can be 
offset by the strong precedent for collaboration and partnership 
so typical of the Arctic research community. For example, 
international collaboration between Arctic states is facilitated 
by the Arctic Council, an international forum for sustainable 
development, the environment, and scientific collaboration. 
Internally, the US supports Arctic research through all of the 
major federal scientific agencies, and coordinates their 
activities through the Interagency Arctic Research Policy 
Committee. 

One notable recent program that has emerged as a result of 
this cooperative research environment is the Distributed 
Biological Observatory (DBO), a collection of sites prioritized 
by multiple funding agencies for  frequent opportunistic 
occupation, including NOAA, the Bureau of Ocean and Energy 
Management, the International Arctic Science Committee, and 
the National Ocean Council [72].  

During the first two years of this program, ITAE has 
formed strong partnerships with researchers at several 
universities, engineering firms, and local communities, and 
continues to reach out in new directions with the Alaska Sea 
Grant, the NOAA Fisheries Observer Program, and Pew 
Trusts. This tradition of multilateral integration will be critical 
to the program’s success. 

NOAA emphasizes data synthesis and cross-line office 
communication is also integral to Arctic research and the 
formation of actionable environmental intelligence. The ITAE 
program will transition these newly developed Arctic research 
technologies to the rest of the community, in order to begin the 
collection of data that can support foundational scientific 
understanding and predictive capacities for Arctic 
environmental change, and its impacts on US communities and 
economies.     

 
Fig. 4. Schematic of the Expendable Ice Tracking (EXIT) Float as 
developed by the researchers at the Pacific Marine Environmental 
Laboratory (PMEL). (1) ‘Hard hat’ casing. (2) Satellite tag. (3) Trawl 
float. (4) Counter-weight. (5) Secondary Release. (6) Weight. (7) Primary 
Release. (8) Anchor.  
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