

Profiler Integrated Sensors & Communications Interface User Manual

©2017 McLane Research Laboratories, Inc., version 17.G.14 Tel: +1 (508) 495-4000 Skype: mclane_research mclane@mclanelabs.com www.mclanelabs.com

Profiler Integrated Sensors & Communications Interface User Manual Table of Contents

Introduction MMP Integrated Sensors and Communications	1
Chapter 1 Sea-Bird CTD Sensors – General Information	1-3
Protecting Sea-Bird CTD Water Outlet Cells	
Testing Sea-Bird CTD Sensors	1-3
Using Bench Test Options	
Direct Sensor Connection	1-7
Restore McLane and Factory Settings	
Display Current Settings	
Perform Profile Test Loop	1-10
Additional Sensor-Specific Test Options	1-11
Display 52MP/41CP CTD Pressure	1-12
Display 52MP/41CP CTD Average Pressure	1-12
Display 52MP/41CP CTD Temperature	1-13
Section 1.1 Sea-Bird 52MP CTD Sensor with MMP	1-15
Sea-Bird 43F IDO with 52MP CTD on MMP	1-16
Collecting Data with the Sea-Bird 52MP CTD	1-17
Configuring the Firmware to Use the 52MP CTD	1-18
Removing the 52MP CTD from the MMP	1-20
Section 1.2 Sea-Bird 41CP CTD with ITP	1-25
Sea-Bird IDO with 41CP CTD on Ice Tethered Profiler	1-26
Collecting Data with the Integrated Dissolved Oxygen Sensor	1-27
Configuring the Firmware to Use the 41CP Sea-Bird CTD	1-28
Configuring the Firmware to Use the IDO Sensor	1-30
Chapter 2 Aanderaa Optode Sensors – General Information	
Collecting Data with the Aanderaa Optode	
Configuring the Firmware to Use the Aanderaa Optode	
Using Bench Test Options	
Direct Sensor Connection	
Performing Profile Test Loop	
Chapter 3 Nortek Aquadopp ACM Sensors – General Info	
Aquadopp II	
AquaPro HR	3-1
Configuring the Firmware to Use the Aquadopp Sensors	3-2

Section 3.1 Nortek Aquadopp II ACM Sensor	
Aquadopp II Data Details	
Data Column Definitions	
Aquadopp II Beam Configuration	
Transducer Mapping	
Data Reduction and Data Decimation	
Aquadopp ACM Data Reduction with Inductive Communications	
Using Bench Test Options	
Direct Connection to the Aquadopp	
Restore Factory Settings	
Display Sensor Settings	
Perform Profile Test Loop	
Set Sampling Rate	
Manual Aquadopp Clock Reset	
Erase Sensor Data	
Aquadopp Heading, Pitch and Roll	
Inserting the Mooring Cable in the Aquadopp II Hinge Plate	
Remove two side screws	
Removing the Aquadopp II from the MMP	
Connecting the Aquadopp II to the MMP	
Section 3.2 AquaPro HR ACM Sensor	
Using Bench Test Options	
Direct Connection to Aquadopp HR	
Halt Data Logging	
Manual Aquadopp Clock Reset	
Perform Profile Test Loop	
Aquadopp Heading, Pitch and Roll	3-34
Chapter 4 Falmouth Scientific ACM+ Sensor	4-1
Collecting Data with the FSI ACM+	
Configuring the Firmware to Use the FSI ACM+ Sensor	
Using Bench Test Options	
Direct Sensor Connection	4-7
Restore McLane and Factory Settings	
Display Current Settings	4-9
Perform Profile Test Loop	4-11
Set Sampling Rate	4-11
Manual ACM+ Clock Reset	4-11
Erase Sensor Data	4-11
Additional Sensor-Specific Test Options	
FSI 3D ACM+ Tilt and Compass	4-13
Installing the ACM+ Sting and attaching to the Mooring Cable	
Installing the ACM+ Sting	4-14
Inserting the Mooring Cable	4-16
Removing the ACM+ Electronics Housing	4-17

Reinstalling the ACM+ Electronics Housing	. 4-18
Chapter 5 Nobska MAVS ACM Sensor	5-1
Collecting Data with the Nobska MAVS ACM	5-2
Configuring the Firmware to use the MAVS ACM	5-3
Using Bench Test Options	5-4
Direct Sensor Connection	5-7
Retrieve Configuration Files	5-9
Report Parameter Settings	5-9
Perform Profile Test Loop	5-9
Additional Sensor-Specific Test Options	. 5-10
Nobska MAVS ACM Tilt and Compass	. 5-10
Chapter 6 Wet Labs Optical Sensors – General Information	6-1
Sensor Calibration	6-1
Configuring the Firmware to Use the Wet Labs Optical Sensors	6-2
Using Bench Test Options	6-3
Direct Sensor Connection	6-6
Perform Profile Test Loop	6-8
Installing the Optical Sensor in the Mounting Space	6-9
Section 6.1 Wet Labs BBFL2 Sensor	6-11
Collecting Data with the BBFL2	6-12
	. 0 12
Section 6.2 Wet Labs FLBB(RT)/D or FLBBCD Sensor	.6-13
Collecting Data with the FLBB(R1)/D	. 6-14
Collecting Data with the FLBBCD	. 6-15
Installing the FLBB(RT)/D of FLBBCD in the Mounting Space	. 0-10
Section 6.3 Wet Labs C-Star Sensor	.6-17
C-Star Configuration and Samples per Average	. 6-18
C-Star Data Details	. 6-19
Using C-Star Bench Test Options	. 6-20
Direct Sensor Connection	. 6-21
Perform Profile Test Loop	. 6-22
Set Samples Averaged	. 6-23
Offload C-Star Data Files	. 6-24
Installing the C-Star in the Mounting Space	. 6-25
Removing the C-Star from the MMP	. 6-27
Section 6.4 Wet Labs SeaOwl Sensor	. 6-29
SeaOwl Data Details	. 6-30
Using SeaOwl Bench Test Options	. 6-31
Direct Sensor Connection	. 6-32
Restore McLane Parameters	. 6-33
Report Parameter Settings	. 6-33
Perform Profile Test Loop	. 6-34
Removing SeaOwl for Calibration	. 6-35

Chapter 7 Ostar OceanServer MotionPack Sensor	
Collecting Data with the OceanServer MotionPack	
Configuring the Firmware to use the OceanServer MotionPack	
Using Bench Test Options	
Direct Sensor Connection	
Restore McLane and Factory Settings	
Display Current Settings	
Perform Profile Test Loop	
Chapter 8 Satlantic SUNA Sensor	
Collecting Data with the SUNA	
Configuring the Firmware to use the SUNA	
Using Bench Test Options	
Direct Sensor Connection	
Restore McLane and Factory Settings	
Display Current Settings	
Perform Profile Test Loop	
Perform Sensor Self Test	
Installing the SUNA in the Sensor Mounting Brackets	
Chapter 9 Biospherical Par Sensor	
Collecting Data with the PAR	
PAR Calibration Sheet Example	9-3
Configuring the Firmware to use the PAR	9-5
Using Bench Test Options	
Direct Sensor Connection	
Connecting the PAR Sensor	
Removing the PAR Sensor	
Section 9.1 PAR OSP-2200 Sensor	9_13
Section 7.1 I AR $QSI = 2200$ Sensor	
Section 9.2 PAR QCP-2300 Sensor	
Chapter 10 Seapoint Turbidity/Fluorometer – General Info	
Collecting Data with the Turbidity Sensor	
Configuring the Firmware to use Turbidity/Fluorometer Sensors	
Using Bench Test Options	
Direct Sensor Connection	
Turbidity/Fluorometer Shared Bulkhead Implementation	
Chapter 11 Inductive Communications	
Configuring the Firmware to use Inductive Communications	
Section 11.1 Sea-Bird Inductive Model Modem (IMM)	
Advanced Interface Options – Inductive Communications	
IMM Use Force Capture Line	
IM ACK/NAK Reply Timer	
IM Listening Loop Timer	
IMM Configure Surface Modem	

Using Bench Test Options	11-8
• •	
Direct Sensor Connection	11-11
Restore McLane and Factory Settings	11-13
Display Current Settings	11-14
Single Transaction	11-15
Telemetry Session	11-16
Offloading Last Sent Data	11-17
Sea-Bird SIM/UIMM Communication Session Overview	11-18
Sea-Bird IMM Communication Session Command Sequence	11-19
Data Format for File Transmission	11-21
Auxilliary Files	11-22
Sea-Bird Inductive Modem Module Configuration	11-22
UIMM Configuration Settings	11-24
Section 11.2 RBR Mooring Line Modem (MLM)	11-27
Advanced Interface Options – Inductive Communications	
Using Bench Test Options	11-29
Direct Sensor Connection	11-32
Restore McLane and Factory Settings	11-33
Display Current Settings	11-33
Single Transaction	11-34
Telemetry Session	11-34
Offloading Last Sent Data	11-35
RBR MLM Communication Session Overview	11-36
RBR MLM Communication Session Command Sequence	11-37
RBR MLM Sample Transmission Session	11-39
Example MLM Inductive Telemetry Session	11-40
Data Format for File Transmission	11-40
Auxilliary Files	11-42
Appendix A: Inductive File Transmission Protocol	A-1
Appendix B Sea-Bird Underwater Inductive Modem (UIM)	B-1
Sea-Bird UIM Communication Session Overview	B-2
Sea-Bird UIM Communication Session Command Sequence	B-3
UIM Sample Transmission Session	B-4
Control of Communication Session	B-6
Data Format for File Transmission	B-6
Sea-Bird Firmware and Settings for 4K Packets	B-7
Settings for 4K Packets	B-7
SIM Settings	B-8
UIM Settings	B-8

Profiler Integrated Sensors & Communications Interface User Manual List of Figures

Figure 1-1: Profiler Main Menu	1-4
Figure 1-2: Profiler Bench Tests Menu	1-4
Figure 1-3: 52MP CTD Bench Test Menu	1-5
Figure 1-4: Baud Rate Communication Error Examples	1-6
Figure 1-5: Baud Rate Menu	1-6
Figure 1-6: Option <1> 52MP CTD Direct Communications	1-7
Figure 1-7: Option <1> 41CP CTD Direct Communications	1-7
Figure 1-8: Option <2> Restore McLane Settings	1-8
Figure 1-9: Option <4>Report Parameter Settings	1-9
Figure 1-10:Option <5> Perform Profile Test Loop	1-10
Figure 1-11: Main Bench Tests Menu	1-11
Figure 1-12:Option <5> Display SBE 52MP CTD Pressure	1-12
Figure 1-13:Option <3> Display and Average Pressure Settings	1-12
Figure 1-14:Option <4> Record and Average Temperature	1-13
Figure 1.1-1: MMP with Sea-Bird 52MP CTD	1-15
Figure 1.1-2: SBE 52MP CTD with 43F Dissolved Oxygen	1-16
Figure 1.1-3: Unpacked 52MP CTD File with 43F Oxygen Data	1-17
Figure 1.1-4: System Configuration Menu	1-18
Figure 1.1-5: CTD Selection	1-19
Figure 1.1-6: 52MP CTD and Removable Strut	1-20
Figure 1.1-7: Strut with Notch Facing Up	1-21
Figure 1.1-8: Remove Socket Cap Screw	1-21
Figure 1.1-9: Removing the Strut	1-22
Figure 1.1-10: Loosening the Mounting Plate Screw	1-22
Figure 1.1-11: Lifting the CTD from the Sensor Mount	1-23
Figure 1.1-12: Unplugging the Bulkhead Connector	1-23
Figure 1.2-1: ITP with Sea-Bird 41CP CTD	1-25
Figure 1.2-2: ITP 41CP CTD with Integrated Dissolved Oxygen	1-26
Figure 1.2-3: Unpacked 41CP CTD File with Integrated Dissolved Oxygen Data	1-27
Figure 1.2-4: System Configuration Menu with Sensor Selections	1-28
Figure 1.2-5: CTD Selection	1-29
Figure 1.2-6: SBE 41CP CTD Integrated Dissolved Oxygen Prompt	1-30
Figure 2-1: MMP with Aanderaa Optode – Side View	2-1
Figure 2-2: Profiling MMP with Aanderaa Optode	2-1
Figure 2-3: Engineering Data w/Aanderaa Optode Oxygen and Temperature Data	2-2
Figure 2-4: System Configuration Menu	2-3
Figure 2-5: Profiler Main Menu	2-4
Figure 2-6: Profiler Bench Tests Menu	2-5
Figure 2-7: Aanderaa Optode Bench Tests Menu	2-5
Figure 2-8: Baud Rate Communication Error Examples	2-6
Figure 2-9: Baud Rate Menu	2-6
Figure 2-10: Aanderaa 4330F Optode Direct Communications	2-7
Figure 2-11: Aanderaa 3830 Optode Direct Communications	2-7

Figure 2-12: Verifying Optode Settings	2-8
Figure 2-13: Option <2> Perform Profile Test Loop	2-9
Figure 3-1: Type 1 or 2 to Enable the Aquadopp Sensor	3-2
Figure 3.1-1: MMP with Aquadopp II Sensor	3-3
Figure 3.1-2: MMP with Aquadopp II Data (screen 1 of 3)	3-4
Figure 3.1-3: MMP with Aquadopp II Data (screen 2 of 3)	3-4
Figure 3.1-4: MMP with Aquadopp II Data (screen 3 of 3)	3-4
Figure 3.1-5: Aquadopp II Sensor Orientation	3-6
Figure 3.1-6: Profiler Main Menu	. 3-10
Figure 3.1-7: Profiler Bench Tests Main Menu	. 3-10
Figure 3.1-8: Aquadopp Bench Test Menu	. 3-11
Figure 3.1-9: Baud Rate Communication Error Examples	. 3-12
Figure 3.1-10: Baud Rate Menu	. 3-12
Figure 3.1-11: Option <1> Direct Communications with the Aquadopp	. 3-13
Figure 3.1-12: Option <2> Restore McLane Parameters	. 3-14
Figure 3.1-13: Option <4> Report Parameter Settings	. 3-15
Figure 3.1-14: Option <5> Perform a Profile Test Loop	. 3-16
Figure 3.1-15: Option <6> Set Sampling Rate	. 3-17
Figure 3.1-16: Option <8> Read Aquadopp Clock	. 3-18
Figure 3.1-17: Bench Tests Menu Option <6> Aquadopp DVS Tilt & Compass	3-19
Figure 3.1-18: Remove Four Plastic Screws	. 3-20
Figure 3.1-19: Positioning the Mooring Wire	. 3-21
Figure 3.1-20: Loosen Four Screws	3-22
Figure 3.1-21: Unscrew from Hinge Plate	. 3-22
Figure 3.1-22: Loosen Back Screws	.3-23
Figure 3 1-23. Detach Bulkhead Connector	3-23
Figure 3 1-24 [•] Reconnect Bulkhead Connector	3-24
Figure 3.1-25: Connect Bulkhead Connector	.3-24
Figure 3.1-26: Tighten Back Screws	3-25
Figure 3.1.27 [•] Secure to Hinge Plate	3-25
Figure 3.1.28° Tighten Hinge Plate Screws	3-25
Figure 3 2-1: MMP with Aquadopp HR Sensor	3-27
Figure 3.2-7. Profiler Main Menu	3-28
Figure 3.2-3. Profiler Bench Tests Main Menu	3-28
Figure 3.2-4. Aquadonn Bench Test Menu	3-29
Figure 3.2-5: Baud Rate Communication Error Examples	3-30
Figure 3.2-6: Baud Rate Menu	3-30
Figure 3.2-7: Ontion <1> Aquadopp Communications	3-31
Figure 3.2-8: Option <2> Halt Data Logging	3_32
Figure 3.2-9: Option <4> Read Clock	3_32
Figure 3.2-10: Option <5> Perform a Profile Test Loon	3_32
Figure 3.2-10. Option Sector Internet rest Doop	3_34
Figure 4.1: MMP with FSI ACM +	+c-c. ⊿_1
Figure 4-2: FSI ACM+ Data	··· -τ- 1 Δ_2
Figure 4.3: System Configuration Menu	∠-ד ⊿_2
Figure 4 4. Drofiler Main Menu	۲-۲ ۱۸۸
	4-4

Figure 4-5: Profiler Bench Tests Menu	4-4
Figure 4-6: ACM+ 3d Bench Tests Menu	4-5
Figure 4-7: Baud Rate Communication Error Examples	4-6
Figure 4-8: Baud Rate Menu	4-6
Figure 4-9 3D ACM+ Communications	4-7
Figure 4-10: <2> Restore McLane Parameters	4-8
Figure 4-11: <4> Report Parameter Settings (screen 1 of 2)	4-9
Figure 4.12: <4> Report Parameter Settings (screen 2 of 2)	. 4-10
Figure 4-13: <6> Set Sampling Rate	. 4-11
Figure 4-14: Main Bench Tests Menu	. 4-12
Figure 4-15: Option <6> Falmouth Scientific 3d ACM+ tilt & compass	. 4-13
Figure 4-16: Tighten ACM+ Sting	. 4-14
Figure 4-17: Secure Excess Cable	. 4-15
Figure 4-18: Releasing Hinged Mounting Brackett	. 4-16
Figure 4-19: Correct Positioning of ACM+ Electronics Housing	. 4-17
Figure 5-1: MMP with MAVS ACM	5-1
Figure 5-2: MAVS ACM Data	5-2
Figure 5-3: System Configuration Menu	5-3
Figure 5-4: Profiler Main Menu	5-4
Figure 5-5: Profiler Bench Tests Menu	5-4
Figure 5-6: Nobska MAVS Bench Tests Menu	5-5
Figure 5-7: Baud Rate Communication Error Examples	5-6
Figure 5-8: Baud Rate Menu	5-6
Figure 5-9: Nobska MAVS Direct Communications	5-8
Figure 5-10: Nobska MAVS Direct Communications	5-9
Figure 5-11: Main Bench Tests Menu	. 5-10
Figure 5-12: Tilt/Compass Options must be performed in MAVS Firmware	. 5-10
Figure 6-1: System Configuration Menu	6-2
Figure 6-2: Profiler Main Menu	6-3
Figure 6-3: Profiler Bench Tests Menu	6-3
Figure 6-4: Wet Labs BBFL2 Bench Test Menu	6-4
Figure 6-5: Wet Labs C-Star Bench Test Menu	
Figure 6-6: Baud Rate Communication Error Examples.	
Figure 6-7: Baud Rate Menu	
Figure 6-8: <1> BBFL2 Direct Communications.	
Figure 6-9. Direct Communication with the FLBB(RT)/D	6-7
Figure 6-10: Option <2> Perform Profile Test Loop	6-8
Figure 6-11: BBFL2 Model- Installed	6-9
Figure 6 1-1: MMP with BBFL2 Installed – Side View	6-11
Figure 6 1-2: ENG File with BBFL 2 Data	6-12
Figure 6 2-1: MMP with FLBB(RT)/D Installed	6-13
Figure 6.2-2: MMP with FFLBBCD Installed	6-13
Figure 6.2-3. Engineering File FLBB(RT)/D Fluorometer Turbidity and Temp	6-14
Figure 6.2-4. Engineering File, FLBBCD Chloronhvll Backscatter and Fluor	6-15
Figure 6 2-5: Connecting the Sensor Cable	6-16
Figure 6.2-6: Placing the Sensor in the Mount	6-16
1 gare 0.2 0. 1 menig me benoti in me mount	

Figure 6.2-7: Placing the Mounting Support	6-16
Figure 6.2-8: Securing the Mounting Support	6-16
Figure 6.3-1: MMP with C-Star Installed	6-17
Figure 6.3-2: Configure C-Star - Sample Averaging	6-18
Figure 6.3-3: 'T' File C-Star Data	6-19
Figure 6.3-4: Profiler Bench Tests Menu	6-20
Figure 6.3-5: Wet Labs C-Star Bench Tests Menu	6-20
Figure 6.3-6: <1> C-Star Direct Communications	6-21
Figure 6 3-7: $<2>$ C-Star Profile Test Loop	6-22
Figure 6 3-8: $<3>$ Set Number of Samples Averaged	6-23
Figure 6 3-9: <4> Offload C-Star Data Files	6-24
Figure 6 3-10 [°] Installing Bottom Clamp	6-25
Figure 6 3-11. Tightening Nylon Screws	6-25
Figure 6 3-12 [°] Inserting the C-Star	6-25
Figure 6.3-13: Securing Ton Clamp	6-26
Figure 6.3-14: Tighten Ton Clamp Nylon Screws	6-26
Figure 6.3-15: Tighten Top Clamp and Connect Bulkhead	6-26
Figure 6.4-1: MMP with SeaOwl Installed	6_29
Figure 6.4-2: W' File SeaOwl Data	6-30
Figure 6.4-2: With the Seatowit Data	6-31
Figure 6.4.4: Wet Labs SeaOwl Bench Tests Menu	6 31
Figure 6.4.5: SeeOwl Direct Communications	6 22
Figure 6.4.6: <2> Postora Mol and Darameters	6 22
Figure 6.4.7: <2> Papart Darameter Settings	6 22
Figure 6.4.9: <4> SooOyul Profile Test Loop	6 24
Figure 6.4.0: Leaste Mounting Sereus	6 25
Figure 6.4.10. Locare Mounting Screws	0-33
Figure 6.4-10: Loosen Mounting Screws	0-33
Figure 0.4-11. Remove the Sensor Cable	0-33
Figure 7-1: Motion Sensor on MMP Electronics Stack	/-1
Figure 7-2: M File Motion Pack Data	/-2
Figure 7-3: System Configuration Menu with Sensor Selections	/-3
Figure /-4: Profiler Main Menu	/-4
Figure 7-5: Profiler Bench Tests Menu	
Figure 7-6: OceanServer MotionPack Bench Tests Menu	7-5
Figure 7-7: Baud Rate Communications Error Examples	7-6
Figure 7-8: Baud Rate Menu	7-6
Figure 7-9: Option <1> OceanServer Direct Communications	7-7
Figure 7-10:Option <2> Restore McLane Parameters	7-8
Figure 7-11: Option <4> Report Parameter Settings	7-9
Figure 7-12: Option <5> Perform Profile Test Loop screen 1 of 2	7-10
Figure 7-13: Option <5> Perform Profile Test Loop screen 2 of 2	7-11
Figure 8-1: MMP with SUNA Sensor	8-1
Figure 8-2: 'S' File SUNA Data	8-3
Figure 8-3: System Configuration Menu	8-4
Figure 8-4: Frames per Stop Check	8-5
Figure 8-5: Profiler Main Menu	8-6

Figure 8-6: Profiler Bench Tests Menu	8-6
Figure 8-7: SUNA Bench Test Menu	8-7
Figure 8-8: Baud Rate Communication Error Examples	8-8
Figure 8-9: Baud Rate Menu	8-8
Figure 8-10: Option <1> Direct Communications with SUNA	8-9
Figure 8-11: Option <2> Restore McLane Parameters	8-10
Figure 8-12: Option <4> Report Parameter Settings	8-11
Figure 8-13: Option <5> Perform a profile test loop	8-12
Figure 8-14: Option <6> SUNA Self Test	8-13
Figure 8-15: MMP with SUNA Sensor	8-14
Figure 8-16: Sliding the SUNA into the Sensor Brackets	8-14
Figure 8-17: Tightening Bottom and Top Mounting Screws	8-15
Figure 8-18: Tightening Bottom and Top Mounting Screws	8-15
Figure 8-19 Connect the 5-pin connector	8-15
Figure 8-20: Connect the 5-pin connector	8-15
Figure 8-21: Completed SUNA Installation	8-16
Figure 9-1: MMP with PAR Sensor	9-1
Figure 9-2: ENG File with PAR Data	9-2
Figure 9-3: System Configuration Menu	9-5
Figure 9-4: Profiler Main Menu	9-6
Figure 9-5: Profiler Bench Tests Menu	9-6
Figure 9-6: PAR Direct Communications	9-7
Figure 9-7: Connecting to the Bulkhead	9-8
Figure 9-8: Sliding in the PAR	9-8
Figure 9-9: Securing the Sensor Clamp	9-8
Figure 9-10: Re-inserting the Clamp	9-8
Figure 9-11: Tightening the Socket Cap Screws	9-9
Figure 9-12: PAR Sensor Installed	9-9
Figure 9-13: Unscrewing the Socket Cap Screws	9-10
Figure 9-14: Loosening the Sensor Clamp	9-10
Figure 9-15: Pulling Out the Sensor Clamp	9-10
Figure 9-16: Loosening the Clamp Screws	9-10
Figure 9-17: Pulling Out Sensor Clamp	9-11
Figure 9-18: Removing Bulkhead Connector	9-11
Figure 9-19: Placing the Cap on the PAR	9-11
Figure 9.1-1: PAR QSP-2200 Sensor	9-13
Figure 9.2-1: MMP with PAR QCP-2300 Sensor	9-15
Figure 10-1: MMP with Turbidity and Fluorometer Sensors	10-1
Figure 10-2: ENG File with Turbidity Data	10-2
Figure 10-3: System Configuration Menu	10-3
Figure 10-4: Profiler Main Menu	10-4
Figure 10-5: Profiler Bench Tests Menu	10-4
Figure 10-6: Set Turbidity Gain	10-5
Figure 10-7: Turbidity Direct Communications	10-6
Figure 10-8: MMP with Turbidity and Fluorometer MCBH Connector	10-7
Figure 11-1: Inductive Coil	11-1
Figure 11-2: Select Telemetry Type	11-3

Figure 11.1-1: Sea-Bird IMM Modem	11-5
Figure 11.1-2: Inductive Telemetry Settings on the Advanced Interface Menu	11-6
Figure 11.1-3: IMM use Force Capture Line	11-7
Figure 11.1-4: Profiler Main Menu	11-8
Figure 11.1-5: Profiler Bench Tests Menu	11-8
Figure 11.1-6: IMM Bench Test Menu	11-9
Figure 11.1-7: Baud Rate Communication Error Examples	11-10
Figure 11.1-8: Baud Rate Menu	11-10
Figure 11.1-9: IMM Direct Communications (screen 1 of 2)	11-11
Figure 11.1-10: IMM Direct Communications (screen 2 of 2)	11-12
Figure 11.1-11: Option <2> Restore McLane Settings	11-13
Figure 11.1-12: Option <4> Report Parameter Settings	11-14
Figure 11.1-13: Option <5>Single Transaction	11-15
Figure 11.1-14: Option <6> Telemetry Session	11-16
Figure 11.1-15: Option <5> Last Sent	11-17
Figure 11.1-16: File Metadata Packet	11-21
Figure 11.1-17: Packet Header Structure	11-21
Figure 11.2-1: MLM Modem Electronics Board and Inductive Coil	11-27
Figure 11.2-2: Inductive Telemetry Settings on the Advanced Interface Menu	11-28
Figure 11.2-3: Profiler Main Menu	11-29
Figure 11.2-4: Profiler Bench Tests Menu	11-29
Figure 11.2-5: MLM Bench Test Menu	11-30
Figure 11.2-6: Baud Rate Communication Error Examples	11-31
Figure 11.2-7: Baud Rate Menu	11-31
Figure 11.2-8: MLM Direct Communications	11-32
Figure 11.2-9: Option <4> Report Parameter Settings	11-33
Figure 11.2-10: Option <6> Telemetry Session	11-34
Figure 11.2-11: Option <5> Last sent	11-35
Figure 11.2-1: File Metadata Packet	11-40
Figure 11.2-2: Packet Header Structure	11-41
Figure B-1: Sea-Bird UIM Modem Electronics Board	B-1
Figure B-2: File Metadata Packet	B - 6
Figure B-3: Packet Header Structure	B-6

Introduction MMP Integrated Sensors and Communications

The MMP requires a Conductivity, Temperature, Depth (CTD) sensor to control profiler movement and profiling duration. Many other optional integrated sensors are available. McLane also integrates new sensors upon customer request.

Installed sensors affect battery drain and ballast calculations. Contact McLane (www.mclanelabs.com) for further information.

Each integrated sensor and the inductive communications options are explained in the following chapters:

Sensor
Sea-Bird CTD Sensors – General Info
Sea-Bird 52MP CTD with MMP
Sea-Bird 41CP CTD with ITP
Aanderaa Optode Sensors – General Info
Nortek Aquadopp ACM Sensors – General Info
Aquadopp Model II ACM
AquaPro Model HR ACM
Falmouth Scientific ACM+ Sensor
Nobska MAVS ACM Sensor
Wet Labs Optical Sensors – General Info
Wet Labs BBFL2
Wet Labs FLBB(RT)/D or FLBBCD
Wet Labs C-Star
Wet Labs SeaOwl
Ostar OceanServer MotionPack Sensor
Satlantic SUNA Sensor

Sensors Chapter Contents	
9	Biospherical PAR Sensors
9.1	Biospherical PAR QSP-2200
9.2	Biospherical PAR QCP-2300
10	Seapoint Turbidity/Fluorometer Sensors
11	Inductive Communications
11.1	Sea-Bird IMM
11.2	RBR MLM

User Key

This user manual contains the following keys to call attention to information:

0	Note	Information of special note such as proper battery installation.
	Important	Information to take caution such as handling of bulk head connectors.
	Caution	Information to prevent serious conditions such as loss of data.

Chapter 1 Sea-Bird CTD Sensors – General Information

The Profiler requires a Conductivity, Temperature, Depth sensor (CTD) to control profile duration and depth. The 52MP CTD is the default CTD enabled on the Profiler. Other CTD sensors are also available. This section provides information common to the 52MP CTD and the 41CP CTD. The 41CP CTD is installed only on the Ice Tethered Profiler (ITP). For more information about Sea-Bird CTD sensors, refer to the Sea-Bird Electronics website (www.seabird.com) or contact Sea-Bird.

Correct sensor orientation is critical. Completely review sensor-specific mechanical instructions in each section of this Chapter and consult Sea-Bird before disassembling sensor components.

Protecting Sea-Bird CTD Water Outlet Cells

The Sea-Bird sensor cells have protective caps that cover the water intake port and the Tshaped water outlet. Keep these protective caps in place until deployment to prevent contamination by airborne particulates. The water intake port has a TC Duct that keeps the water measured by the temperature sensor the same as the water that passes through the cell. Contamination can coat the cell walls and change sensor calibration.

Flushing before and after deployment keeps the cell clean and facilitates wetting the conductivity cell electrodes. Use a dilute solution of Triton X-100 (approximately 1 part Triton to 50 parts deionized water).

Testing Sea-Bird CTD Sensors

When Bench Testing with the Sea-Bird CTD sensors use a closed loop of tubing to connect the intake and exhaust ports.

Using Bench Test Options

The main Bench Tests and 52MP/41CP CTD Bench Tests menus provide options to verify and change sensor settings prior to deployment. The main Bench Tests Menu displays only options that are available to installed sensors.

1. From the main Profiler Menu, type 5 at the prompt to display the Bench Tests Menu.

Config:	MPP_	СТ	CF2 V5.00 of Jan 11 2013
		McLane Resea Pat S/1	arch Laboratories, USA ctern Profiler N: ML12345-001
			Main Menu
		Tue Feb	19 07:16:21 2013
	<1>	Set Time	<5> Bench Test
	<2>	Diagnostics	<6> Deploy Profiler
	<3> <4> <c></c>	Flash Card Ops Sleep Configure	<7> Offload Deployment Data <8> Contacting McLane

Figure 1-1: Profiler Main Menu

Configuration: MN	MP_IM_CT_CM_PA_S	C	CF2 V5	00 0	f Dec	72	012
	Bench	Tests					
	Fri Dec 71	3:30:20	2012				
Sensor Utilities	s:						
<1> Seabird 521	MP CTD communica	tion 🗲			-		
<3> Seabird 521	MP CTD piessuie MP CTD average n	rassura					
<4> Seabird 521	MP CTD temperatu:	re recor	d				
<5> Nortek Aqua <6> Nortek Aqua	aDopp DVS commun aDopp DVS tilt &	ication compass					
System evaluation <7> Motor opera <8> Release Bra <9> Independent <0> Estimate do	n: ation ake t Watchdog eplovment endura	nce					
Sensor & Option	tests:						
Exit: <x> Main Menu Selection [] ?</x>							

Figure 1-2: Profiler Bench Tests Menu

The sensor-specific Bench Tests menus are the same for the Sea-Bird 52MP and 41CP CTD sensors. The examples shown in this section feature the 52MP CTD.

- 2. From the Bench Tests menu, type *1* at the prompt to display the Seabird 52MP/41CP CTD Bench Test Menu (Figure 1-3).
- 3. Type *1* to connect directly with the 52MP/41CP CTD.

Selection [] ? 1	
Seabird 52MP CTD Bench Test Menu	-
Thu Dec 6 16:11:44 2012	-
<1> Direct communications (9600 Baud)	— Direct Communications
<2> Restore McLane parameters	
<3> Restore factory parameters	
<4> Report parameter settings	
<5> Perform a profile test loop	
<m> return to previous Menu</m>	
Selection [] ? 1	
04/16/12 12:13:45 SBE/52MP Press ^C to terminate C 04/16/12 12:13:45 SYSTEM Press ^B to change or cor	COMM session. hfirm Baud rate

Figure 1-3: 52MP CTD Bench Test Menu

The Profiler communicates with the Sea-Bird CTD at 9600 baud. If this rate is changed (for example after sensor manufacturer servicing) communicating directly with the sensor displays unrelated characters or a communication error (Figure 1-4). Fix the error by changing the sensor to the baud rate the Profiler requires.

Figure 1-4: Baud Rate Communication Error Examples

Typing [CTRL]-[B] from the sensor-specific Bench Tests menu displays the Baud Rate menu (Figure 1-5). Use this menu option to temporarily connect at the sensor's current baud rate. Once connected to the sensor, change to the profiler-required baud rate. Finally, exit the Baud Rate Menu to resume the communications session.

```
Config: MPP_IM_CT_CM_FL_TU_OP_MP CF2 V5.00 of Jan 10 2013

Pattern Profiler

Select new Baud rate

Fri Jan 11 13:48:30 2013

<1> 1200

<2> 2400

<3> 4800

<4> 9600

<5> 19200

<6> 38400

<7> 57600

<G> Go to COMM session

Selection [] ? g
```

Figure 1-5: Baud Rate Menu

Direct Sensor Connection

Once connected directly to the CTD, typing commands at the command prompt provides additional sensor information.

```
Selection [] ? 1
01/11/13 13:47:03 SBE/52MP Press ^C to terminate COMM session.
01/11/13 13:47:04 SYSTEM Press ^B to change or confirm Baud rate.
01/11/13 13:47:04 SBE/52MP 9.6 kBaud communication channel opened.
01/11/13 13:47:04 SBE/52MP Powered on.
- 52MP CTD
SBE 52 MP 2.4 🗲
S>DS
SBE 52 MP 2.4 SERIAL NO. 0107
DO installed = no 
stop profile when pressure is less than = -100.0 decibars
automatic bin averaging when p < -100.0 disabled
number of samples = 304
number of bins = 0
top bin interval = 10
top bin size = 10
top bin max = 100
middle bin interval = 50
middle bin size = 50
• • • ┥
                                    —— Display shortened for brevity
S>slp
S> [^C]
01/11/13 13:48:08 SBE/52MP Powered off.
01/11/13 13:48:08 SBE/52MP 9.6 kBaud communication channel closed.
```

Figure 1-6: Option <1> 52MP CTD Direct Communications

```
Selection [] ? 1
04/22/14 16:10:20 SBE/41CP 9.6 kBaud communication channel opened.
04/22/14 16:10:20 SBE/41CP Powered on.
-41CP CTD
SBE 41CP-IDO McLane V 3.0
S>ds
SBE 41CP-IDO McLane V 3.0 SERIAL NO. 5556
firmware compilation date: 4 February 2010
stop profile when pressure is less than = -100.0 decibars
automatic bin averaging at end of profile disabled
number of samples = 81
number of bins = 0
top bin interval = 10
top bin size = 10
top bin max = 100
middle bin interval = 50
middle bin size = 50
· · · 🗲
                                   — Display shortened for brevity
S> [^C]
04/22/14 16:10:27 SBE/41CP Powered off.
04/22/14 16:10:27 SBE/41CP 9.6 kBaud communication channel closed.
```

Figure 1-7: Option <1> 41CP CTD Direct Communications

Restore McLane and Factory Settings

Option <2> and <3> from the SBE 52MP/ 41CP Bench Test menu restore the McLane or Seabird factory settings. Figure 1-8 shows a reset of the McLane-defined parameters. Using option <2> requires typing the password *McLane*.

Selection [M] ? 2 Password: mclane 14:58:37 SBE/52MP communication channels opened. 14:58:37 SBE/52MP powered ON. 14:58:37 SBE/52MP sending command []. . 14:58:38 SBE/52MP sending command [pcutoff= -100.0]. . 14:58:38 SBE/52MP sending command [initprofile]. . 14:58:39 SBE/52MP sending command [ds]. 14:58:40 SBE/52MP was able to restore McLane parameters. 14:58:40 SBE/52MP powered OFF. 14:58:40 SBE/52MP power-down delay 14:58:45 SBE/52MP communication channels closed.

Figure 1-8: Option <2> Restore McLane Settings

Option <3> 'Restore factory parameters' (not shown) restores the configuration parameters delivered with the 52MP CTD. Using option <3> requires the password *factory*.

The firmware requires the Sea-bird CTD parameters configured by McLane. Changing settings, or resetting to the factory settings prevents the CTD from working correctly with the Profiler.

Display Current Settings

Option <4> displays the current SBE 52MP/41CP CTD settings.

Selection [M] ? 4 14:58:54 SBE/52MP press ^C to terminate COMM session. 14:58:55 SBE/52MP communication channels opened. 14:58:55 SBE/52MP powered ON. 14:58:55 SBE/52MP executing scripted commands. Please wait... 14:58:55 SBE/52MP sending command [ds]. S> 14:58:56 SBE/52MP completed scripted commands. 14:58:56 SBE/52MP press ^C to terminate COMM session. SBE 52 MP 1.1a SERIAL NO. 0007 stop profile when pressure is less than = -100.0 decibars automatic bin averaging when p < -100.0 disabled number of samples = 0number of bins = 0top bin interval = 10 top bin size = 10top bin max = 100middle bin interval = 50 middle bin size = 50 middle bin max = 1000 bottom bin interval = 100 bottom bin size = 100 do not include two transition bins oxygen frequency multiplier = 0.25S> S> [^C] 14:59:08 SBE/52MP powered OFF. 14:59:08 SBE/52MP power-down delay 14:59:13 SBE/52MP communication channels closed.

Figure 1-9: Option <4>Report Parameter Settings

Perform Profile Test Loop

Option <5> runs a profile test loop. This test simulates an automated sensor verification and a 5 minute profile.

Selection [] ? 5 11/28/12 12:37:00 SBE/52MP Automated verification of sensor settings. 11/28/12 12:37:01 SBE/52MP 9.6 kBaud communication channel opened. 11/28/12 12:37:01 SBE/52MP Powered on. 11/28/12 12:37:01 SBE/52MP Sending command [gs]. 11/28/12 12:37:02 SBE/52MP Sending command []. . . 11/28/12 12:37:03 SBE/52MP Sending command [ds]. 11/28/12 12:37:04 SBE/52MP Identified as V2.4, S/N 106. 11/28/12 12:37:04 SBE/52MP Sending command [outputctdo=n]. . 11/28/12 12:37:04 SBE/52MP Sending command [outputctdoraw=n]. . 11/28/12 12:37:05 SBE/52MP Sending command [pcutoff= -100.0]. . 11/28/12 12:37:05 SBE/52MP Sending command [initprofile]. . 11/28/12 12:37:06 SBE/52MP Sending command [ds]. 11/28/12 12:37:07 SBE/52MP Powered off. 11/28/12 12:37:07 SBE/52MP Power-down delay 11/28/12 12:37:12 SBE/52MP 9.6 kBaud communication channel closed. 11/28/12 12:37:13 SYSTEM Deleting C000000.DAT. 1 file(s) erased Press ^C to exit the loop

Figure 1-10: Option <5> Perform Profile Test Loop

Additional Sensor-Specific Test Options

From the main Bench Tests menu additional sensor testing options can be selected for pressure and temperature averages.

Configuration:	MMP_IM_CT_CM_P	PA_SC	CF2 V5_00	of Dec	7 2012
	Be	ench Tests			
	Fri Dec	7 13:30:20	2012		
Sensor Utiliti	ies:				
<1> Seabird 5 <2> Seabird 5	52MP CTD commun 52MP CTD pressu	nication ure	◀		Iditional Test Ontions
<pre><3> Seabird 5 <4> Seabird 5</pre>	52MP CTD averag 52MP CTD temper	ge pressure rature reco:	rd 🗲 🗕		
<5> Nortek Ad <6> Nortek Ad System Evaluat <7> Motor ope <8> Release H <9> Independe <0> Battery e	quaDopp DVS cor quaDopp DVS til tion: eration Brake ent Watchdog endurance	nmunication lt & compas	5		
System Sensor	& Option Tests	5:			
<i> Seabird I <m> OceanServ <p> Biospheri <w> Wetlabs H</w></p></m></i>	Inductive Moder ver5000 Motion ical PAR ECO BBFL2	n Pack			
Exit:					
<x> Main Menu</x>	L				

Figure 1-11: Main Bench Tests Menu

Display 52MP/41CP CTD Pressure

Option <2> from the main Bench Tests menu displays the current CTD pressure.

```
Selection [] ? 2
04/21/14 14:59:45 SBE/52MP pressure = -0.110 dbar.
Press any key to continue.
```

Figure 1-12:Option <5> Display SBE 52MP CTD Pressure

Display 52MP/41CP CTD Average Pressure

Option <3> from the main Bench Tests menu displays a user-selected number of pressure measurements. The measurements are then averaged.

```
Selection [] ? 3
Enter number of measurements to average (2-5000) [100] ? 3
04/21/14 15:00:03 SBE/52MP Pressure 1 of 3 = -0.120 dbar.
04/21/14 15:00:06 SBE/52MP Pressure 2 of 3 = -0.130 dbar.
04/21/14 15:00:09 SBE/52MP Pressure 3 of 3 = -0.130 dbar.
04/21/14 15:00:09 SBE/52MP Pressure = -0.127 dbar, averaged over 3
samples.
Press any key to continue.
```

Figure 1-13: Option <3> Display and Average Pressure Settings

Display 52MP/41CP CTD Temperature

Option <4> from the main Bench Tests menu sets a number of temperature readings to record and the measurement interval. The firmware wakes from Suspend mode at the set interval and takes a temperature reading. The measurements are then averaged after the specified number of readings are taken. When the user wakes the firmware, the temperature readings and average can be displayed.

```
Selection [] ? 4
Enter number of measurements (1-1000) [ 3] ?
Enter measurement interval [sec] (20- 600) [ 300] ? 20
04/21/14 15:01:25 SYSTEM Temperature record will finish at 04/21/14
15:02:40.
04/21/14 15:01:25 SBE/52MP Powered on.
04/21/14 15:01:30 SBE/52MP Identified as V3.0, S/N 5556 with IDO.
04/21/14 15:01:31 +24.2926 ∞C
04/21/14 15:01:44 SYSTEM Suspended until 04/21/14 15:01:51 ... Awake
04/21/14 15:01:55 +24.3163 ∞C
04/21/14 15:02:08 SYSTEM Sleeping until 04/21/14 15:02:11 ...
04/21/14 15:02:15 +24.3360 ∞C
04/21/14 15:02:28 SYSTEM Sleeping until 04/21/14 15:02:31 ...
04/21/14 15:02:40 SBE/52MP Averaged 3 of 3 requested temperature samples.
04/21/14 15:02:40 SYSTEM Suspended ... .
Enter ^C now to wake up ... [^C]
Display temperature record [Y] ? [^C]

    Display record
```

Figure 1-14:Option <4> Record and Average Temperature

The Sea-Bird documentation is included with the sensor. Refer to this documentation for sensor-sepcific calibration details used for processing unpacked data.

Notes

Section 1.1 Sea-Bird 52MP CTD Sensor with MMP

The Sea-Bird 52MP CTD is a conductivity, temperature, depth sensor that can also include an optional Sea-Bird 43F Dissolved Oxygen sensor. For more information about the 52MP CTD sensor, refer to the Sea-Bird Electronics website (www.seabird.com) or contact Sea-Bird.

Figure 1.1-1: MMP with Sea-Bird 52MP CTD

Mount and orient the 52MP CTD so the intake and exhaust are on the same horizontal plane.

Sea-Bird 43F IDO with 52MP CTD on MMP

The Sea-Bird 43F Dissolved Oxygen sensor is a polarographic membrane sensor that can be optionally integrated on the MMP with the Sea-Bird 52MP CTD.

It is critical to keep the 43F IDO from freezing temperatures during shipment, deployment, recovery and storage. Exposure to temperatures below freezing can cause damage to the sensor.

Figure 1.1-2: SBE 52MP CTD with 43F Dissolved Oxygen

Collecting Data with the Sea-Bird 52MP CTD

A sample unpacked CTD file is shown in Figure 1.1-3. The columns display Conductivity, Temperature and Depth. The hz column displays zeros if the Sea-Bird 43F dissolved oxygen sensor option is not installed.

Profile 7				
mmho/cm	Celsius	dbars	hz	
0.9126	16.3126	0.740	2310	
0.9114	16.3133	0.750	2327	
0.9104	16.3141	0.750	2331	
0.9099	16.3147	0.750	2332	
0.9097	16.3157	0.750	2328	
0.9100	16.3158	0.750	2327	
0.9104	16.3147	0.750	2321	
0.9107	16.3142	0.750	2318	
0.9109	16.3143	0.750	2314	
0.9110	16.3148	0.750	2309	
0.9109	16.3144	0.750	2301	
0.9107	16.3143	0.750	2296	
0.9105	16.3149	0.750	2290	
0.9103	16.3148	0.750	2286	
0.9101	16.3153	0.750	2278	
0.9100	16.3149	0.740	2274	
0.9100 0.9100	16.3150 16.3159	0.740 0.750	2269 2262	

Figure 1.1-3: Unpacked 52MP CTD File with 43F Oxygen Data

Configuring the Firmware to Use the 52MP CTD

The Profiler System Configuration menu specifies the active sensors. To enable a Sea-Bird 52MP CTD, complete the following steps:

- 1. From the Main Menu type *c* and enter the password *con*.
- 2. Select <1> for the CTD Port. The CTD Selection menu displays.

```
Config: MPP CT CM TU
                                       CF2 V5.22 of Apr 28 2015
                        Pattern Profiler
                      System Configuration
                   Tue May 26 15:13:05 2015
System Parameters:
  <0> Battery capacity
                                    240 Ah
Sensor Suite:
Port J9:CTD
 <1> Seabird 52MP CTD ----- ENABLED CTD Port
Port J5:ACM
 <2> Falmouth Scientific 3d ACM+ --- ENABLED
     Port J6:IMM
 <I> Telemetry
     Port J4:SSP
 <B> BioSuite Triplet/PAR
 <J> Wetlabs ECO FLBBCD
 <N> Satlantic SUNA Nitrate
 <O> Aanderaa Optode
 <U> bbe FluoroProbe
 <W> Wetlabs ECO BBFL2
 <Y> Wetlabs ECO FLBB2K
 <0> Wetlabs FLNTURTD
     Port J10:SPR
 <L> Wetlabs ECO FLBB(RT)/D
  <P>> Biospherical PAR
     Port J7:TRB
 <T> Seapoint IR Turbidity ----- ENABLED @ 5 samp/avg, Autogain
     Port J8:FLR
  <E> Seapoint CHL Fluorometer
  <F> Wetlabs CDOM Fluorometer
     Port J4i:SER
  <H> ProOceanus CH4
  <M> OceanServer5000 MotionPack
     Port J5i:SER
  <K> ProOceanus CO2
Exit:
  <X> Save changes <^C> Cancel changes
```

Figure 1.1-4: System Configuration Menu

3. Select the installed CTD.

Config: MPP_IM_CT_CM_PA_MP CF2 V5.16 of Aug 22 2014

 Pattern Profiler

 CTD Selection

 Tue Sep 2 09:53:16 2014

 <1> Falmouth Scientific Em CTD

 <2> Seabird 41CP CTD

 <3> Seabird 52MP CTD ----- ENABLED

 <4> RBR CTD

 <5> Mensor 6180 DPT

 <X> configuration menu

 Selection [] ? 3

Figure 1.1-5: CTD Selection

Removing the 52MP CTD from the MMP

A releasable polyethylene support strut on the MMP body provides easier installation and removal of the Sea-Bird 52MP CTD. When removing the 52MP CTD from the MMP, use the photos and steps that follow as a guide.

Figure 1.1-6: 52MP CTD and Removable Strut

- 1. Remove the MMP skin.
- 2. Turn the strut so that the notch faces up as shown in Figure 1.1-7.

Figure 1.1-7: Strut with Notch Facing Up

3. Using a 3/8" Hex Driver, remove the socket cap screw from the bottom of the strut.

Figure 1.1-8: Remove Socket Cap Screw

4. Lift the strut up to remove the CTD.

Figure 1.1-9: Removing the Strut

5. Using an Allen wrench, remove the mounting screws (ensure that the sensor is supported).

Figure 1.1-10: Loosening the Mounting Plate Screw

6. Carefully lift the 52MP CTD from the sensor mount (shown in Figure 1.1-11).

Figure 1.1-11: Lifting the CTD from the Sensor Mount

7. Unplug the bulkhead connector and remove the cable.

Figure 1.1-12: Unplugging the Bulkhead Connector

8. Reverse steps 1-7 to install the 52MP CTD.

Notes

Section 1.2 Sea-Bird 41CP CTD with ITP

The Sea-Bird 41CP CTD is a conductivity, temperature, depth sensor integrated with the Ice Tethered Profiler (ITP). The 41CP CTD can include an optional Sea-Bird Integrated Dissolved Oxygen (IDO) sensor. For more information about the 41CP CTD sensor, refer to the Sea-Bird Electronics website (www.seabird.com) or contact Sea-Bird.

Figure 1.2-1: ITP with Sea-Bird 41CP CTD

The 41CP CTD is installed only on the Ice Tethered Profiler (ITP).

Sea-Bird IDO with 41CP CTD on Ice Tethered Profiler

The Sea-Bird 41CP Integrated Dissolved Oxygen sensor is a polarographic membrane sensor that can be optionally integrated on the ITP with the Sea-Bird 41CP CTD.

It is critical to keep the 41CP-IDO from freezing temperatures during shipment, deployment, recovery and storage. Exposure to temperatures below freezing can cause damage to the sensor.

Figure 1.2-2: ITP 41CP CTD with Integrated Dissolved Oxygen

Collecting Data with the Integrated Dissolved Oxygen Sensor

If the IDO sensor is integrated with the 41CP CTD, the CTD file displays the measurement in hz (Figure 1.2-3). If integrated dissolved oxygen is not installed the hz column contains 0.

```
Profile 7
 mmho/cm
        Celsius
                  dbars
                         hz
  1.7994 17.9822 11.710 20294
  1.7995 17.9855 11.700 20401
  1.7990 17.9874 11.710 20490
  1.7990 17.9884 11.710 20481
  1.7991
        17.9920 11.710 20482
  1.7992 17.9933 11.710 20497
  1.7994 17.9938 11.700 20493
  1.7988
        17.9937 11.700 20496
  1.7992 17.9929 11.730 20494
  1.7996 17.9926 11.710 20543
  1.7992
        17.9920 11.710 20568
  1.7994
        17.9919 11.710 20549
  1.7992 17.9917 11.710 20530
  1.7990
        17.9915 11.710 20540
  1.7997 17.9916 11.710 20575
  1.7993 17.9917 11.710 20590
  1.7990 17.9918 11.720 20565
  1.7994 17.9918 11.710 20585
  1.7995
         17.9924 11.700 20576
```

Figure 1.2-3: Unpacked 41CP CTD File with Integrated Dissolved Oxygen Data

Configuring the Firmware to Use the 41CP Sea-Bird CTD

The Profiler System Configuration menu specifies the active sensors. To enable a Sea-Bird 41CP CTD, complete the following steps:

- 1. From the Main Menu type *c* and enter the password *con*.
- 2. Select <1> for the CTD sensor Port. The CTD Selection menu displays.

Config	g: MPP_CT_CM_TU	C	F2 V5.22	of Apr 28	2015
	Pat Syste	tern Profiler m Configurati	on	-	
	Tue May	26 15:13:05 2	-		
Syste <0>	em Parameters: Battery capacity	240	Ah		
Sensor	Suite:				
Port 3 <1>	J9:CTD Seabird 41CP CTD	ENA	BLED 🗲	— 41СР С	TD
Port 3 <2>	J5:ACM Falmouth Scientific 3d	ACM+ ENA	BLED		
<1>	Port J6:IMM Telemetry				
 <j> <n> <o> <u> <w> <y> <@></y></w></u></o></n></j>	Port J4:SSP BioSuite Triplet/PAR Wetlabs ECO FLBBCD Satlantic SUNA Nitrate Aanderaa Optode bbe FluoroProbe Wetlabs ECO BBFL2 Wetlabs ECO FLBB2K Wetlabs FLNTURTD				
<l> <p></p></l>	Port J10:SPR Wetlabs ECO FLBB(RT)/D Biospherical PAR				
<t></t>	Port J7:TRB Seapoint IR Turbidity	ENA	BLED @ 5	samp/avg,	Autogain
<e> <f></f></e>	Port J8:FLR Seapoint CHL Fluoromet Wetlabs CDOM Fluoromet	er er			
<h> <m></m></h>	Port J4i:SER ProOceanus CH4 OceanServer5000 Motion	Pack			
<k></k>	Port J5i:SER ProOceanus CO2				
Exit: <x></x>	Save changes <^C> C	ancel changes			

Figure 1.2-4: System Configuration Menu with Sensor Selections

3. Select the installed CTD.

IIIIG. MFF_IM_	CT_CM_PA_MP	CF2 V5.16	of Aug 22 20)14
	Pattern Prof	iler	_	
	CTD Selecti	.on	_	
	Tue Sep 2 09:53:	29 2014		
1> Falmouth 2> Seabird 4	Scientific Em CTD 1CP CTD	ENABLED		
<4> RBR CTD	2MF CID			

Figure 1.2-5: CTD Selection

Configuring the Firmware to Use the IDO Sensor

A setting on the System Configuration menu flags whether IDO is enabled.

- 1. From the Main Menu type *c* and enter the password *con*.
- 2. Select <1> for the CTD Sensor Port.
- 3. Select <2> for the 41CP CTD and then type *Y* to enable the IDO.
- 4. Select $\langle X \rangle$ to exit and save the entry.

Config: MPP_IM_CM_PA_MP	CF2 V5.	l6 of Aug	22 2014		
Pa	ttern Profiler TD Selection				
Tue Sep	2 10:01:11 2014				
<1> Falmouth Scientific E <2> Seabird 41CP CTD <3> Seabird 52MP CTD <4> RBR CTD <5> Mensor 6180 DPT	m CTD				
<x> configuration menu</x>					
Selection [] ? 2					
Enable the "Seabird 41CP CT	D" [Y] ? Y				
Does this CTD have an Integ	rated Dissolved Oxyg	en sensor	[N] ? Y	◀	IDO Pron

Figure 1.2-6: SBE 41CP CTD Integrated Dissolved Oxygen Prompt

Chapter 2 Aanderaa Optode Sensors

Aanderaa Optode sensors measure dissolved oxygen. MMP Release v5.00 firmware and higher support the Aanderaa Optode models 4835, 4330 and 4330F. MMP Release v3.16 and higher support the Aanderaa Optode model 3830. For more information about these sensors, refer to the Aanderaa website (www.aanderaa.com) or contact Aanderaa.

Some Aanderaa models return more data fields than others. The Profiler looks at only the first five data fields (Model, Serial Number, Oxygen, Saturation and Temperature).

Figure 2-1: MMP with Aanderaa Optode – Side View

Figure 2-2: Profiling MMP with Aanderaa Optode

Collecting Data with the Aanderaa Optode

Optode data is logged in the Engineering File as shown in Figure 2-3. When the Optode is disabled or switched off (as during ramp up), the columns contain '0.00'. If there is no data collected within 5 seconds, the Optode automatically powers off to conserve battery energy.

Profile 16									
Sensors were turned on at 11/14/2013 00:00:02 Optode Data Vehicle began profiling at 11/14/2013 00:02:03									
Date [mA] [V]	[dbar]		Oxygen[uM]	Optode Temp[C]	CHL	NTU Tem	perature		
11/14/2013 00:02:03	0	11.9	0.000	0.00	0.00	1548	1980	546	
11/14/2013 00:02:10	75	11.9	0.000	0.00	0.00	1553	2002	546	
11/14/2013 00:02:16	30	11.9	0.000	0.00	0.00	1555	2016	546	
11/14/2013 00:02:22	27	11.9	0.000	0.00	0.00	1558	2027	545	
11/14/2013 00:02:28	26	11.9	0.000	0.00	0.00	1559	2033	546	
11/14/2013 00:02:39	25	11.9	0.500	277.08	16.41	1558	2033	545	
11/14/2013 00:02:46	26	11.9	0.490	276.65	16.41	1559	2038	545	
11/14/2013 00:02:53	26	11.9	0.500	277.08	16.41	1560	2042	545	
11/14/2013 00:03:02	26	11.9	0.570	276.85	16.41	1560	2043	545	
11/14/2013 00:03:09	25	11.9	0.610	276.72	16.41	1560	2046	545	
11/14/2013 00:03:18	26	11.9	0.530	276.39	16.42	1561	2048	545	

Figure 2-3: Engineering Data with Aanderaa Optode Oxygen and Temperature Data

The Optode data collection interval is the same as the MMP firmware 'stop check interval' setting. Due to the time required for the Optode to collect data, the Stop Check Interval should not be set below 4 seconds if the Aanderaa Optode is enabled.

Configuring the Firmware to Use the Aanderaa Optode

The Profiler System Configuration menu specifies the active sensors. To enable an Aanderaa Optode, complete the following steps:

- 1. From the Main Menu type *c* and enter the password *configure*.
- 2. Select <O> for the Aanderaa Optode and then type *Y* to enable the sensor.

Config	g: MPP_CT_CM_TU	CF2	V5.22	of	Apr	28	2015
	Pattern Profil	er		_			
	System Configura	tion					
	Tue May 26 15:13:05	201	5	-			
0							
<0>	Battery capacity 24	0 Ah					
Sensor	r Suite:						
Port (<1>	J9:CTD Seabird 52MP CTD E	NABL	ED				
Port (<2>	J5:ACM Falmouth Scientific 3d ACM+ E	NABL	ED				
<1>	Port J6:IMM Telemetry						
 <j> <n> <o> <u> <w> <y> <q></q></y></w></u></o></n></j>	Port J4:SSP BioSuite Triplet/PAR Wetlabs ECO FLBBCD Satlantic SUNA Nitrate Aanderaa Optode ENABLED bbe FluoroProbe Wetlabs ECO BBFL2 Wetlabs ECO FLBB2K Wetlabs FLNTURTD	←	— Aan	dera	aa Oj	ptoo	de
<l> <p></p></l>	Port J10:SPR Wetlabs ECO FLBB(RT)/D Biospherical PAR						
<t></t>	Port J7:TRB Seapoint IR Turbidity E	NABL	ED @ 5	sar	np/av	∕g,	Autogain
<e> <f></f></e>	Port J8:FLR Seapoint CHL Fluorometer Wetlabs CDOM Fluorometer						
<h> <m></m></h>	Port J4i:SER ProOceanus CH4 OceanServer5000 MotionPack						
<k></k>	Port J5i:SER ProOceanus CO2						
Exit: <x></x>	Save changes <^C> Cancel chang	es					

Figure 2-4: System Configuration Menu

Using Bench Test Options

The main Bench Tests and Aanderaa Bench Tests menus provide options to verify and change sensor settings prior to deployment. The main Bench Tests Menu displays only the options available to installed sensors.

1. From the main Profiler Menu, type 5 at the prompt to display the Bench Tests Menu.

Config: MPP_IM_CT_C	M_FT_TO_OF_WF	CF2 V5.09 OI	OCT 19 2013
McI	Lane Research Labor	ratories, USA	
	Pattern Prof	filer	
	C/N. MT 10245	5_01D	
	5/N. MLIZ343	5=01D	
	Pattern Prof	filer	
	Main Mon		
	Main Menu	4	
	Wed Nov 13 10:00:	:55 2013	
<1> Set Tir	ne <5> Ber	nch Test	
	tion (C) Dor	alor Drofilor	
<2/ DIAGIOS	stics /0/ Deb	DION HIOITIEI	
<3> Flash (Card Ops <7> Off	fload Deployment	Data
<4> Sleep	- <8> Cor	ntacting McLane	
	(0) 001	icaccing inclaime	
<c> Configu</c>	ire		
<c> Configu</c>	ire		

Figure 2-5: Profiler Main Menu

Figure 2-6: Profiler Bench Tests Menu

The sensor-specific Bench Tests menus are the same for the Aanderaa models integrated

with the Profiler . The examples shown in this section feature the 4330F Optode.

- 2. From the Bench Tests menu, type O at the prompt to display the AAND/OPT Bench Test menu.
- 3. Type 1 to connect directly with the Aanderaa Optode.

Figure 2-7: Aanderaa Optode Bench Tests Menu

The Profiler communicates with the Aanderaa at 9600 baud. If this rate is changed (for example after sensor manufacturer servicing) communicating directly with the sensor displays unrelated characters or a communication error (Figure 2-8). Fix the error by changing the sensor to the baud rate the Profiler requires.

Figure 2-8: Baud Rate Communication Error Examples

Typing [CTRL]-[B] from the sensor-specific Bench Tests menu displays the Baud Rate menu (Figure 2-9). Use this menu option to temporarily connect at the sensor's current baud rate. Once connected to the sensor, change to the Profiler-required baud rate. Finally, exit the Baud Rate Menu to resume the communications session.

```
Config: MPP_IM_CT_CM_FL_TU_OP_MP CF2 V5.00 of Jan 10 2013

Pattern Profiler

Select new Baud rate

Fri Jan 11 13:48:30 2013

<1> 1200

<2> 2400

<3> 4800

<4> 9600

<5> 19200

<6> 38400

<7> 57600

<G> Go to COMM session

Selection [] ? g
```

Figure 2-9: Baud Rate Menu

Direct Sensor Connection

Once connected directly to the Optode, typing commands at the command prompt provides additional sensor information. For all three Aanderaa Optode models, the Profiler firmware reads only the first five data fields (model number, serial number, oxygen concentration, oxygen saturation and oxygen temperature) and ignores any other trailing fields. During direct communications with the sensor, the additional trailing fields display. However, these fields are ignored by the Profiler.

Figure 2-10 shows direct connection with the 4330F Optode. Figure 2-11 shows direct connection with the 3830 Optode.

S	election	[M] ? 1						
08/29/12 08/29/12 08/29/12	16:41:4 16:41:4 16:41:4 *******	3 AAND/OPT 4 AAND/OPT 4 AAND/OPT	Press ^C Communica Powered o *********	to termina tion chann n. ********	te COMM se els opened *********	ssion. • *******		
4330F	1086	234.355	89.486	24.181	29.595	29.595	35.644	6.049
520.2	523.6	25.9						
4330F	1086	234.381	89.496	24.181	29.594	29.594	35.627	6.033
520.1	524.6	25.9						
4330F	1086	234.694	89.616	24.181	29.579	29.579	35.599	6.020
520.1	523.2	25.9						
4330F	1086	234.685	89.613	24.181	29.580	29.580	35.594	6.014
520.1	522.3	25.9						
4330F	1086	234.924	89.704	24.181	29.569	29.569	[^C]	
* * * * * * * *	* * * * * * * *	******	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * *		
08/29/12	16:41:5	1 AAND/OPT	Powered o	ff.				
08/29/12	16:41:5	1 AAND/OPT	Communica	tion chann	els closed			

Figure 2-10: Aanderaa 4330F Optode Direct Communications

Figure 2-11: Aanderaa 3830 Optode Direct Communications

1. Type *Get_All* to display Optode settings as shown in Figure 2-12. Verify the following settings: Interval = 30 and Output = 100.

	Get_All															
	Protect		3830	688		0										
	PhaseCoef		3830	688	-8.3	2324	12E+00	1.18	3118E	E+00	0.00	0000E	2+00	0.00	0000E+	+00
	TempCoef		3830	688	2.6	0951	L6E+01	-3.16	72028	E-02	2.98	1936E	-06-	-4.36	4193E-	-09
	FoilNo 38	830	688	4804												
	COCoef 38	830	688	3.1724	120E+	+03-	1.0720	509E+0)2 2.	1331	59E+0	0-1.	7923	40E-0	2	
	C1Coef 38	830	688	-1.7398	310E+	+02	5.1026	520E+0	00-9.	8575	80E-0	2 8.	0224	00E-0	4	
	C2Coef 38	830	688	3.9560)00E+	+00 -	9.8104	100E-C	02 1.	8534	60E-0	3-1.	4253	60E-0	5	
	C3Coef 38	830	688	-4.2633	370E-	-02	8.7882	200E-0	04-1.	6440	89E-0	5 1.	1370	90E-0	7	
	C4Coef 38	830	688	1.7686	590E-	-04 -	2.9550)20E-0	06 5.	5503	90E-0	8-3.	0849	30E-1	0	
	Salinity		3830	688	0.0	0000)0E+00									
	CalAirPhas	е	3830	688	2.9	8592	21E+01									
	CalAirTemp		3830	688	1.9	8721	L6E+01									
	CalAirPres	sure	3830	688	1.0	1440)0E+03									
	CalZeroPha	se	3830	688	6.5	1847	73E+01									
	CalZeroTem	p	3830	688	2.0	4776	58E+01									
Interval ->	Interval	-	3830	688		30										
•	AnCoef		3830	688	0.0	0000)0E+00	1.00	00001	E+00						
Output —	Output		3830	688	1	.00										
	SoftwareVe	rsion	3830		6	88	3									
	SoftwareBu	ild	3830	688		7										

Figure 2-12: Verifying Optode Settings

Refer to the Aanderaa documentation for other valid direct commands.

2. Type [CTRL]-[C] to return to the Bench Tests menu.

Perform Profile Test Loop

Option <2> runs a profile test loop. This test simulates an automated sensor verification and a 5 minute profile.

```
Selection [M] ? 2

Enter StopCheck interval in seconds [15] (4-60) [15] ? 4

08/29/12 16:42:01 AAND/OPT M#4330, S#1086, 234.13 Oxygen, 24.18 Temperature.

08/29/12 16:42:06 AAND/OPT M#4330, S#1086, 234.31 Oxygen, 24.18 Temperature.

08/29/12 16:42:11 AAND/OPT M#4330, S#1086, 234.10 Oxygen, 24.18 Temperature.

08/29/12 16:42:16 AAND/OPT M#4330, S#1086, 234.33 Oxygen, 24.18 Temperature.

08/29/12 16:42:21 AAND/OPT M#4330, S#1086, 234.09 Oxygen, 24.18 Temperature.

[^C]
```

Figure 2-13: Option <2> Perform Profile Test Loop

Due to the time required for the Optode to collect data, the Stop Check Interval should not be set below 4 seconds if the Aanderaa Optode is enabled.

Notes

Chapter 3 Nortek Aquadopp ACM Sensors – General Info

The Nortek Aquadopp Acoustic Doppler Current Meter (ACM) sensor collects doppler acoustic current measurements. The MMP firmware supports two models of the Aquadopp sensor, the Aquadopp II and the AquaPro (HR). This section provides information common to both the HR and Aquadopp II ACM sensors. For more information about these sensors, refer to the Nortek website (www.nortekusa.com) or contact NortekUSA.

Aquadopp II

MMP Release v5.00 firmware and higher support the Aquadopp II sensor. The Aquadopp II is integrated as a standard self-logging sensor. The data is stored locally on the sensor in a file named Axxxxxx.DAT during profiling, and transferred to the MMP controller at the end of the profile. If Aquadopp II data is available, file offload is through inductive communications. Data can then be unpacked to a text file using the McLane Unpacker software. See the 'Unpacking Deployment Data' chapter in the MMP User Manual for more about unpacking deployment data.

AquaPro HR

AquaPro (HR) integration is a prototype implementation on the MMP. The AquaPro (HR) is a customized interface and <u>does not</u> follow the standard conventions of MMP sensor interactions.

Contact McLane for details before planning a deployment with an AquaPro (HR) sensor. The AquaPro (HR) is a self-logging sensor (stores all data on the sensor) however, the AquaPro (HR) does not transfer data to the MMP controller at the end of the profile. The data stored on the AquaPro (HR) must be manually retrieved after deployment recovery.

Configuring the Firmware to Use the Aquadopp Sensors

The Profiler System Configuration menu specifies the active sensors. To enable an Aquadopp sensor complete the following steps:

- 1. From the Main Menu type *c* and enter the password *configure*.
- 2. Select <2> for the Nortek Aquadopp and then type a selection to enable the Aquadopp model. Type *Y* to enable the sensor.

```
Config: MPP CT CM TU
                                      CF2 V5.22 of Apr 28 2015
                      Pattern Profiler
                      System Configuration
                   Tue May 26 15:13:05 2015
System Parameters:
  <0> Battery capacity
                                  240 Ah
Sensor Suite:
Port J9:CTD
 <1> Seabird 52MP CTD ----- ENABLED
Port J5:ACM
  <2> Nortek AquaDopp2 DVS ----- ENABLED AquaDopp2
     Port J6:IMM
 <I> Telemetry
     Port J4:SSP
 <B> BioSuite Triplet/PAR
 <J> Wetlabs ECO FLBBCD
 <N> Satlantic SUNA Nitrate
 <O> Aanderaa Optode
 <U> bbe FluoroProbe
 <W> Wetlabs ECO BBFL2
 <Y> Wetlabs ECO FLBB2K
 <0> Wetlabs FLNTURTD
     Port J10:SPR
 <L> Wetlabs ECO FLBB(RT)/D
 <P>> Biospherical PAR
     Port J7:TRB
 <T> Seapoint IR Turbidity ----- ENABLED @ 5 samp/avg, Autogain
     Port J8:FLR
 <E> Seapoint CHL Fluorometer
 <F> Wetlabs CDOM Fluorometer
     Port J4i:SER
 <H> ProOceanus CH4
  <M> OceanServer5000 MotionPack
     Port J5i:SER
 <K> ProOceanus CO2
Enable the "Nortek AquaDopp2 DVS" [Y] ? y
```

Figure 3-1: Type 1 or 2 to Enable the Aquadopp Sensor

Section 3.1 Nortek Aquadopp II ACM Sensor

MMP Release v5.00 firmware and higher supports the Nortek Aquadopp II Acoustic Doppler Current Meter (ACM). The ACM file for each profile contains the first Aquadopp record ('ANNNNN.DAT' where 'N' is the profile number).

Figure 3.1-1: MMP with Aquadopp II Sensor

Aquadopp II Data Details

Aquadopp II data is logged in the ACM file ('*ANNNNNN.DAT*' where '*N*' is the profile number). Files stored on the MMP controller flash card are binary files. The examples that follow show the text format created by the Profiler Unpacker. See the 'Unpacking Deployment Data' chapter in the MMP User Manual for more about unpacking deployment data.

Profile 2								
MM-DD-YYYY HH:MM:SS	Sndm/s	TmpC	Heading	Pitch	Roll	magnHx	magnHy	magnHz
12-07-2012 16:30:16.000	1500.0000	17.6400	342.6000	0.4000	0.3000	-460	65	193
12-07-2012 16:30:16.500	1500.0000	17.6400	342.6000	0.4000	0.3000	-460	65	193
12-07-2012 16:30:17.000	1500.0000	17.6400	342.1000	0.4000	0.2000	-460	65	190
12-07-2012 16:30:17.500	1500.0000	17.6400	342.1000	0.4000	0.2000	-460	65	190
12-07-2012 16:30:18.000	1500.0000	17.6400	342.3000	0.3000	0.3000	-460	64	190
12-07-2012 16:30:18.500	1500.0000	17.6400	342.3000	0.3000	0.3000	-460	64	190
12-07-2012 16:35:10.500	1500.0000	17.6400	342.1000	0.4000	0.3000	-460	65	190

Figure 3.1-2: MMP with Aquadopp II Data (screen 1 of 3)

Beams	Cells	Beaml	Beam2	Beam3	Beam4	Beam5	Vel[0,0]	Vel[1,0]	Vel[2,0]	Vel[3,0]
4	1	1	2	3	4	0	1.32030	0.31160	0.89480	0.45590
4	1	1	2	3	4	0	1.33630	0.02960	0.91070	0.00270
4	1	1	2	3	4	0	0.91700	0.02480	0.94530	0.00540
4	1	1	2	3	4	0	2.15710	-0.01220	0.94610	0.00300
4	1	1	2	3	4	0	2.07930	-0.01710	0.92470	0.00130
4	1	1	2	3	4	0	2.13280	0.00210	0.94890	0.00360
• •	•									
4	1	1	2	3	4	0	1.49030	0.00020	-0.00210	0.03870

Figure 3.1-3: MMP with Aquadopp II Data (screen 2 of 3)

Amp[0,0]	Amp[1,0]	Amp[2,0]	Amp[3,0]	Corr[0,0]	Corr[1,0]	Corr[2,0]	Corr[3,0]
071	045	044	043	023	009	032	011
073	123	098	112	016	096	075	097
073	103	097	103	015	070	071	091
073	100	098	101	016	063	071	091
072	099	099	101	004	065	069	094
072	097	099	100	009	067	078	094
072	107	100	089	032	093	078	034
Profile 2							
AquaDop	p2 turned o	n at 12/07/20	12 16:30:02				
AquaDop	p2 turned o	ff at 12/07/2	012 16:35:15	097			
	-						

Figure 3.1-4: MMP with Aquadopp II Data (screen 3 of 3)

Data Column Definitions

The section that follows details the full (non-reduced) Aquadopp II data ACM files. The column names provided by McLane are included with a description of represented units and human readable names.

Heading	Parameter	Units	Comments
MM-DD-YYYY	Date	Month-Day-Year	
		format	
HH:MM:SS	Time	Hour-Minute-	
		Second.Fractional	
		Second format	
Sndm/s	Speed of Sound	m/s	Speed of Sound Constant
	Constant		
TmpC	Temperature	°C	
Heading	Sensor & Profiler	Degrees	
	Heading		
Pitch	Sensor & Profiler	Degrees	Positive Bow Up
	Pitch		
Roll	Sensor & Profiler	Degrees	Positive Starboard Down
	Roll		
magnHx	Magnitude Vector		Instrument X direction
			magnetometer value
magnHy	Magnitude Vector		Instrument Y direction
			magnetometer value
magnHz	Magnitude Vector		Instrument Z direction
			magnetometer value
Beams	Number of Beams		3 for Upward Profiles
	Enabled for the		3 for Downward Profiles
	profile		4 for Stationary Profiles
Cells	Number of Cells per		Fixed at 1
	Beam		
Beamx	Transducer Mapping		Beam5 is not used in this
	to data fields for		sensor. Always set to
	Velocity, Amplitude		zero.
	and Correlation data		
Vel[x-1, 0]	Beam Velocities	mm/s	Beam Velocity for the
			transducer mapped to the
			corresponding Beam
			number.
Amp[x-1, 0]	Beam Amplitude	Counts	Return signal amplitude
			for the transducer mapped
			to the corresponding Beam
~		<i></i>	number.
Corr[x-1, 0]	Beam Correlation	%	A measure of signal
			quality. See Nortek User
			Guide for more
1			information

Aquadopp II Beam Configuration

Physical sensor /beam orientation is important and corresponds with the data mapped in the ACM files. Mount the Aquadopp II so that the arrow points to the top of the Profiler as shown in Figure 3.1-5.

Figure 3.1-5: Aquadopp II Sensor Orientation

Transducer Mapping

The Aquadopp II provides for mapping a physical transducer to a specific "beam" within the dataset. The MMP controller will command the use of a specific set of beams to use depending on the profiling direction as shown below:

Profiling Direction	Beam	1 Beam	2 Beam	3 Beam 4
Up	ON	ON	OFF	ON
Down	OFF	ON	ON	ON
Stationary	ON	ON	ON	ON

The Aquadopp II data contains a field for Beam 5 which is not used on this sensor.

The value in each row for these columns specifies which physical beam (in this case 1-4) is mapped to that dataset beam. Below is an example and its interpretation

The example below shows the case for a downward traveling profile.

Beams	Cells	Beam1	Beam2	Beam3	Beam4	Beam5
3	1	2	3	4	0	0

The first and second columns ("Beams" and "Cells") indicate there are 3 beams active (first column), with 1 cell in each beam (second column).

Data from physical beam 2 (this should be one of the horizontally oriented beams) is contained in the first data field (i.e. Beam1), data from physical beam 3 in the second data field (Beam2), and physical beam 4 in the third data field (Beam3). Beam4 is zero indicating it is not used in this profile.

Data Reduction and Data Decimation

Data file reduction takes place within the Profiler firmware based on commands sent from the Surface Controller. Compressed Aquadopp II data files must be parsed using the file AQUADOPP.CFG. Data file decimation sets the number of data records the surface controller retrieves upon request. Appendix A in this User Manual ' Inductive File Transmission Protocol' explains more about data file reduction, data decimation and Profiler Inductive commands.

Aquadopp ACM Data Reduction with Inductive Communications

MMP Release v5.07 firmware provides AquaDopp II ACM data file reduction which allows the user to reduce the data fields the AquaDopp II collects/transmits inductively. The reduced file has a .DEC file extension. For example, A00000099.DAT reduction file would be A00000099.DEC. Included fields are stored in the .DEC file in order. Data field configuration is defined in AQUADOPP.CFG which is stored on the Profiler's CompactFlash disk. See the 'Inductive Communications' chapter in this User Manual for more information.

White space between the comma separated digits in the AQUADOPP.CFG configuration are optional.

The field reduction is specified by a configuration file that is stored on the Profiler's CompactFlash disk. This file must be named AQUADOPP.CFG. The contents of AQUADOPP.CFG file are used to determine which fields in the full AquaDopp2 DAT record will be stored in the reduced DEC file.

Any line in this file that starts with a pound-sign character (#) will be treated as a comment and is ignored. The <u>first</u> line that does <u>not</u> start with a pound-sign is taken to be a comma-separated list of flags that indicate whether or not to include a particular field in the reduced DEC file. A '1' indicates the field should be included. A '0' indicates it should not be included.

An example of AQUADOPP.CFG contents follows. This example also represents the default behavior, if the CFG file is missing, corrupt or unreadable. (The default reduced size is approximately 25% of the original full DAT file; e.g., a ~400kb DAT file results in a ~100kb DEC file.)

Lines, like this one, that start with the pound-sign are ignored. # The following line has the names of each field, in the order expected by the Profiler's reduction routine. The user can edit or eliminate this line as desired. # Time, SoundSpeed, TempC, Heading, Pitch, Roll, magX, magY, magZ, Beams, Cells, Beam1, Beam2, Beam3, Beam4, Beam5, Vscale, Vel0, Vel1, Vel2, Amp0, Amp1, Amp2, Cor0, Cor1, Cor2 1, 1, 1, 0, 0, Ο, 1, Ο, 1, Ο, Ο, Ο, Ο, Ο, Ο, Ο, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0 # The scanning routine stops parsing after it sees any line that does not start with a pound-sign, so anything goes after the above line. # The above comma-separated flags will be scanned to determine whether or not to include that particular field in the reduced output. White space is optional. # Any included fields are stored in the DEC file in the exact order shown in the above list. Reordering the commented names has no effect, other than cosmetically.

The following table contains the names, in order, of each possible field to include, the number of bytes it will occupy in the DEC file if included, and the type of variable to expect.

F	Time	Sound Speed	Temp°C	Heading	Pitch	Roll	mag X	Mag Y	Mag Z	Beams	Cells	Beam 1	Beam 2	Beam 3	Beam 4	Beam 5
В	6	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1
Т	ubyte	uint	int	uint	int	int	int	int	int	ubyte	ubyte	ubyte	ubyte	ubyte	ubyte	ubyte

Note : In the tables below F =	field; B = bytes; T = type
--------------------------------	----------------------------

F	Vscale	Vel0	Vel1	Vel2	Amp0	Amp1	Amp2	Cor0	Cor1	Cor2
В	1	2	2	2	1	1	1	1	1	1
Т	byte	int	int	int	ubyte	ubyte	ubyte	ubyte	ubyte	ubyte

The variable types are described as follows:

type	name	bytes
byte	signed byte	1
ubyte	unsigned byte	1
uint	unsigned integer	2
int	signed integer	2
ulong	unsigned long integer	4

Using Bench Test Options

The main Bench Tests and Aquadopp Bench Tests menus provide options to verify and change sensor settings prior to deployment. The main Bench Tests Menu displays only options that are available to installed sensors.

1. From the main Profiler Menu type 5 at the prompt to display the Bench Tests menu.

tories, USA ler
ler
071
ler
3 2014
er
yment Data
Lane

Config: MPP_IM_CT CF2 V5	5.14 of Jun	2 2014
Pattern Profiler		
Bench Tests		
Fri Jun 6 13:20:17 2014		
CTD utilities:		
<1> Seabird 41CP-IDO CTD communication <2> Seabird 41CP-IDO CTD pressure <3> Seabird 41CP-IDO CTD average pressure <4> Seabird 41CP-IDO CTD temperature record		
<5> Nortek AquaDopp DVS communication <6> Nortek AquaDopp DVS tilt & compass		-
System evaluation: <7> Motor operation <8> Set Brake <9> Independent Watchdog <d> Detailed schedule <s> Recover schedule</s></d>		
Sensor & Option tests:		
<i> Seabird Inductive Modem Exit:</i>		

Figure 3.1-7: Profiler Bench Tests Main Menu

- 2. From the main Bench Tests menu type 5 at the prompt to display the Nortek Aquadopp Bench Test Menu.
- 3. Type *1* to connect directly with the Aquadopp.

Selec	tion []	? 5							
Config:	MPP_IM_	CT_CM_PA_S	SC_MP	CF2	V5.12	of	Feb	11	2014
			Pattern Pro	filer		-			
		AQUA	ADOPP Bench	Test Mer	nu				
		Tue N	Mar 11 15:39	:47 2014	1	-			
<1>	Direct	communicat	cions (19200	Baud)					
<2>	restore	McLane pa	arameters						
<3>	restore	Factory p	parameters						
<4>	Report	parameter	settings						
<5>	Perform	a profile	e test loop						
<6>	Set sam	pling rate	e (1 Hz)						
<7>	Set Aqu	aDopp clo	ck						
<8>	Read Ag	uaDopp clo	ock						
<9>	Erase s	ensor data	a						
<m></m>	return	to previou	ıs Menu						

Figure 3.1-8: Aquadopp Bench Test Menu

The Profiler communicates with the Aquadopp II at 19200 baud. If this rate is changed (for example after sensor manufacturer servicing) communicating directly with the sensor displays unrelated characters or a communication error (Figure 3-1-9). Fix the error by changing the sensor to the baud rate the Profiler requires.

Figure 3.1-9: Baud Rate Communication Error Examples

Typing [CTRL]-[B] from the sensor-specific Bench Tests menu displays the Baud Rate menu (Figure 3-1-10). Use this menu option to temporarily connect at the sensor's current baud rate. Once connected to the sensor, change to the Profiler-required baud rate. Finally, exit the Baud Rate Menu to resume the communications session.

```
Config: MPP_IM_CT_CM_FL_TU_OP_MP CF2 V5.00 of Jan 10 2013

Pattern Profiler

Select new Baud rate

Fri Jan 11 13:48:30 2013

<1> 1200

<2> 2400

<3> 4800

<4> 9600

<5> 19200

<6> 38400

<7> 57600

<G> Go to COMM session

Selection [] ? g
```

Figure 3.1-10: Baud Rate Menu

Direct Connection to the Aquadopp

1. Type *1* to connect directly with the Aquadopp ACM.

```
Selection [] ? 1
01/02/13 14:03:56 AQUADOPP 19.2 kBaud communication channel opened.
01/02/13 14:03:56 AQUADOPP Powered on. . ...
01/02/13 14:03:57 AQUADOPP Sending command [ID]. .
01/02/13 14:03:57 AQUADOPP Identified as V2020, S/N 100014.
01/02/13 14:03:57 AQUADOPP Powered off.
01/02/13 14:03:57 AQUADOPP 19.2 kBaud communication channel closed.
01/02/13 14:03:59 AQUADOPP Press ^C to terminate COMM session.
01/02/13 14:04:00 SYSTEM Press ^B to change or confirm Baud rate.
01/02/13 14:04:00 AQUADOPP 19.2 kBaud communication channel opened.
01/02/13 14:04:00 AQUADOPP Powered on.
AQUADOPP2 - NORTEK AS.
Version 2020 (McLane) (Dec 14 2012 11:25:13)
COMMAND MODE
OK
ID
AQUADOPP2,100014
```

Figure 3.1-11: Option <1> Direct Communications with the Aquadopp

Restore Factory Settings

Options <2> and <3> from the Aquadopp Bench Test menu (Figure 3.1-12) restore the McLane or Nortek factory settings on the Aquadopp sensor. This option is for the Aquadopp II. The Aquadopp (HR) is configured directly. Using option <2> requires the password *mclane*. Using option <3> also requires a password. Contact McLane before resetting to the factory parameters.

```
Selection [] ? 2 Password: *****
01/02/13 14:04:18 AQUADOPP 19.2 kBaud communication channel opened.
01/02/13 14:04:18 AQUADOPP Powered on. . ...
01/02/13 14:04:18 AQUADOPP Sending command [ID]. .
01/02/13 14:04:19 AQUADOPP Identified as V2020, S/N 100014.
01/02/13 14:04:19 AQUADOPP Sending command [SETDEFAULT, ALL].
01/02/13 14:04:19 AQUADOPP Sending command [SETINST, BR=19200, RS=232, LED=1]. .
01/02/13 14:04:20 AQUADOPP Sending command
[SETPLAN, MICP=1, CP=0, DICP=0, VD=1, MV=10, SA=35, BURST=1, MIBURST=0]. .
01/02/13 14:04:21 AQUADOPP Sending command
[SETPLAN, DIBURST=0, SV=1500, FN="TELEMETRYFILE.BIN", SO=0]. .
01/02/13 14:04:23 AQUADOPP Sending command
[SETTM, SD=1, SA=1, CD=1, PD=1, TV=1, TA=1, TC=1, TVBT=0, TABT=0, TCBT=0, TDBT=0]. .
01/02/13 14:04:24 AQUADOPP Sending command
[SETCP, NC=01, CS=0.5, BD=0.3, CY="BEAM", PL=0, AI=1, DF=0].
01/02/13 14:04:25 AQUADOPP Sending command
[SETBURST, NC=1, NB=0, CS=0.23, BD=0.15, CY="BEAM", PL=-9]. .
01/02/13 14:04:27 AQUADOPP Sending command
[SETBURST, SR=2, NS=1024, VR=5.00, VP=1.00, DF=2, NPING=1].
01/02/13 14:04:28 AQUADOPP Sending command [BOARDSENSSET,22,4]. .
01/02/13 14:04:28 AQUADOPP Sending command [CALSAVE]. .
01/02/13 14:04:29 AQUADOPP Sending command [SAVE, ALL]. .
01/02/13 14:04:30 AQUADOPP Powered off.
01/02/13 14:04:30 AQUADOPP 19.2 kBaud communication channel closed.
01/02/13 14:04:30 AQUADOPP Was able to restore McLane parameters.
```

Figure 3.1-12: Option <2> Restore McLane Parameters

The Aquadopp II parameters are specific to the settings configured by McLane. Changing or resetting to the factory settings prevents the Aquadopp II from working correctly with the Profiler..

Display Sensor Settings

Option <4> (available for the Aquadopp II only) from the AquaDopp Bench Test menu displays the current Aquadopp parameters.

Selection [] ? 4 01/02/13 14:04:35 AQUADOPP 19.2 kBaud communication channel opened. 01/02/13 14:04:35 AQUADOPP Powered on. 01/02/13 14:04:36 AQUADOPP Sending command [ID]. . 01/02/13 14:04:36 AQUADOPP Identified as V2020, S/N 100014. 01/02/13 14:04:36 AQUADOPP Sending command [GETCLOCK]. . 01/02/13 14:04:37 AQUADOPP 2013,1,2,11,54,42. 01/02/13 14:04:37 AQUADOPP Sending command [GETINST]. . 01/02/13 14:04:37 AQUADOPP 19200,232,1. 01/02/13 14:04:37 AQUADOPP Sending command [GETPLAN]. .. 01/02/13 14:04:37 AQUADOPP 1,0,0,1,10,35,1,0,0,1500,TELEMETRYFILE.BIN,0,0. 01/02/13 14:04:37 AQUADOPP Sending command [GETTM]. . 01/02/13 14:04:38 AQUADOPP 1,1,1,1,1,1,1,0,0,0,0. 01/02/13 14:04:38 AQUADOPP Sending command [GETCP]. .. 01/02/13 14:04:38 AQUADOPP 1,0.50,0.30,BEAM,0.00,1,0.00000,0.00,0. 01/02/13 14:04:38 AQUADOPP Sending command [GETBURST]. ... 01/02/13 14:04:38 AQUADOPP 1,0,0.23,0.15,BEAM,-9.00,2,1024,5.00,1.00,2,1. 01/02/13 14:04:38 AQUADOPP Sending command [GETUSER]. . 01/02/13 14:04:39 AQUADOPP 0.00,0.00,0,0,0. 01/02/13 14:04:39 AQUADOPP Powered off. 01/02/13 14:04:39 AQUADOPP 19.2 kBaud communication channel closed.

Figure 3.1-13: Option <4> Report Parameter Settings

Perform Profile Test Loop

Option <5> (available for the Aquadopp II only) from the Aquadopp Bench Test menu runs a profile test loop. This test simulates an automated sensor verification and a 5 minute profile, as shown in Figure 3.1-14.

```
Selection [] ? 5
Enter minutes per profile (1-60) [5] ? 2
Automatically cycle through sampling rates [N] ?
01/02/13 14:06:14 AQUADOPP Automated verification of sensor settings.
01/02/13 14:06:14 AQUADOPP 19.2 kBaud communication channel opened.
01/02/13 14:06:14 AQUADOPP Powered on. . ...
01/02/13 14:06:15 AQUADOPP Sending command [ID]. .
01/02/13 14:06:15 AQUADOPP Identified as V2020, S/N 100014.
 Format the AquaDopp disk? [N] ? n
 Erase AquaDopp data [N] ? y ARE YOU SURE [N] ? y
01/02/13 14:06:21 AQUADOPP Sending command [ERASE,CODE=9999]. .
01/02/13 14:06:22 AQUADOPP All data erased.
01/02/13 14:06:23 AQUADOPP Clock write 01/02/2013 14:06:23.
01/02/13 14:06:23 AQUADOPP Sending command
[SETCLOCK, MONTH=01, DAY=02, YEAR=2013, HOUR=14, MINUTE=06, SECOND=23]. .
01/02/13 14:06:24 AQUADOPP Sending command [GETCLOCK].
01/02/13 14:06:24 AQUADOPP Clock reads 01/02/2013 14:06:23.
01/02/13 14:06:24 AQUADOPP Sending command [SETDEFAULT, ALL]. .
01/02/13 14:06:25 AQUADOPP Sending command [SETINST, BR=19200, RS=232, LED=1]. .
01/02/13 14:06:26 AQUADOPP Sending command
[SETPLAN, MICP=1, CP=0, DICP=0, VD=1, MV=10, SA=35, BURST=1, MIBURST=0]. .
01/02/13 14:06:27 AQUADOPP Sending command
[SETPLAN, DIBURST=0, SV=1500, FN="TELEMETRYFILE.BIN", SO=0]. .
01/02/13 14:06:28 AQUADOPP Sending command
[SETTM, SD=1, SA=1, CD=1, PD=1, TV=1, TA=1, TC=1, TVBT=0, TABT=0, TCBT=0, TDBT=0]. .
01/02/13 14:06:30 AQUADOPP Sending command
[SETCP, NC=01, CS=0.5, BD=0.3, CY="BEAM", PL=0, AI=1, DF=0]. .
01/02/13 14:06:31 AQUADOPP Sending command
[SETBURST, NC=1, NB=0, CS=0.23, BD=0.15, CY="BEAM", PL=-9]. .
01/02/13 14:06:32 AQUADOPP Sending command
[SETBURST, SR=2, NS=1024, VR=5.00, VP=1.00, DF=2, NPING=1].
01/02/13 14:06:33 AQUADOPP Sending command [BOARDSENSSET,22,4]. .
01/02/13 14:06:34 AQUADOPP Sending command [CALSAVE]. .
01/02/13 14:06:35 AQUADOPP Sending command [SAVE, ALL]. .
01/02/13 14:06:35 AQUADOPP Powered off.
01/02/13 14:06:36 AQUADOPP Power-down delay .....
01/02/13 14:06:41 AQUADOPP 19.2 kBaud communication channel closed.
01/02/13 14:06:41
                    SYSTEM Deleting A000000.DAT
Press ^C to exit the loop
```

Figure 3.1-14: Option <5> Perform a Profile Test Loop

Set Sampling Rate

Option <6> (available for the Aquadopp II only) from the AquaDopp Bench Test menu sets the sampling rate.

Figure 3.1-15: Option <6> Set Sampling Rate

If a rate other than the allowed rate is typed, the firmware displays an error message. The sampling rate ranges from 1-10 to accommodate other ACM's. However, the Aquadopp accepts only sampling rates of 1, 2, 4, 8, 10 Hz as indicated on the display.

Manual Aquadopp Clock Reset

Option <7> (not shown) (available for the Aquadopp II only) from the Aquadopp Bench Test menu provides a way to manually reset the Aquadopp clock to the Profiler real-time clock (RTC). Before each profile, the Profiler firmware automatically sets the Aquadopp clock to the Profiler. This option provides a way to manually perform the clock reset for testing purposes.

Selecting <8> from the Aquadopp Bench Test Menu displays the Aquadopp clock reading.

Selection	[] ? 8			
12/07/12	13:19:46	AQUADOPP	19.2 kBaud communication channel opened.	
12/07/12	13:19:46	AQUADOPP	Powered on	
12/07/12	13:19:47	AQUADOPP	Sending command [ID]	
12/07/12	13:19:47	AQUADOPP	Identified as V2018, S/N 100003.	
12/07/12	13:19:47	AQUADOPP	Sending command [GETCLOCK] - Clock Reading	
12/07/12	13:19:47	AQUADOPP	Clock reads 12/07/2012 13:19:47.	
12/07/12	13:19:47	AQUADOPP	Powered off.	
12/07/12	13:19:47	AQUADOPP	19.2 kBaud communication channel closed.	

Figure 3.1-16: Option <8> Read AquaDopp Clock

Erase Sensor Data

Option <9> (available for the Aquadopp II only) from the Aquadopp Bench Test Menu (not shown) provides a way to manually clear the data from the Aquadopp SD storage card. At the start of each deployment, the Profiler firmware automatically commands the Aquadopp to erase the data stored internally. This option provides a manual way to clear the data from the Aquadopp internal storage for testing purposes. Selecting <M> returns to the previous menu.

Aquadopp Heading, Pitch and Roll

Option <6> from the main Bench Test Menu (Figure 3.1-17) 'Nortek Aquadopp DVS Tilt & Compass' provides heading, pitch and roll output which can be used to perform a spin test.

Power of 11V or greater is required for bench testing the Aquadopp DVS tilt & compass.

Selection [] ? 6

Displays Heading, Pitch & Roll outputs for use while mounting the ACM pressure housing.

Press ^C to terminate operation.

01/03/13 15:59:49 AQUADOPP 19.2 kBaud communication channel opened. 01/03/13 15:59:49 AQUADOPP Powered on. 01/03/13 15:59:50 AQUADOPP Sending command [ID]. . 01/03/13 15:59:50 AQUADOPP Identified as V2020, S/N 100017. 01/03/13 15:59:50 AQUADOPP Sending command [ERASE,CODE=9999]. . 01/03/13 15:59:51 AQUADOPP Sending command [SETBURST,SR=1]. . 01/03/13 15:59:51 AQUADOPP Sending command [SETPLAN,VD=0,SO=1]. . 01/03/13 15:59:52 AQUADOPP Sending command [START]. .

DATE	TIME	HEADING	TX	TY	MagX	MagY	MagZ	
01/03/13	15:59:53	2.9	10.4	-1.9	-510	-30	148	
01/03/13	15:59:54	0.0	8.9	-3.7	-510	-33	149	
01/03/13	15:59:55	15.3	9.3	-1.2	-510	-73	141	
01/03/13	15:59:56	35.7	8.2	0.6	-507	-124	110	
01/03/13	15:59:57	55.4	9.5	3.0	-504	-163	50	
01/03/13	15:59:58	80.1	14.6	11.1	-505	-136	-80	•
01/03/13	15:59:59	89.2	16.6	19.0	-507	-81	-131	
01/03/13	16:00:00	107.0	6.0	17.6	-516	-45	-110	
01/03/13	16:00:01	133.5	-0.9	13.4	-509	-42	-142	
01/03/13	16:00:02	176.8	-0.2	2.5	-484	10	-218	•
01/03/13	16:00:03	198.9	-0.8	-1.7	-495	54	-190	•
01/03/13	16:00:04	234.8	4.5	-5.6	-479	156	-178	•
01/03/13	16:00:05	256.6	5.6	5.5	-471	236	-93	•
01/03/13	16:00:06	297.3	10.4	6.5	-487	221	-6	•
01/03/13	16:00:07	325.5	1.6	7.0	-498	152	118	•
01/03/13	16:00:08	350.4	9.5	12.3	-495	147	138	•
01/03/13	16:00:09	10.7	4.5	5.8	-513	16	155	
01/03/13	16:00:10	27.1	5.3	-3.2	-495	-133	160	•
01/03/13	16:00:11	9.6	7.0	-4.1	-509	-73	152	[^C]
01/03/13	16:00:12	AQUADOPP	Sending	command	[00000	0].		
01/03/13	16:00:12	AQUADOPP	Sending	command	[K1W%!	Q].		
01/03/13	16:00:12	AQUADOPP	Sending	command	[K1W%!	Q]		
01/03/13	16:00:13	AQUADOPP	Sending	command	[MC].			
01/03/13	16:00:13	AQUADOPP	Powered	off.				
01/03/13	16:00:13	AQUADOPP	Power-do	own dela <u>y</u>				••
01/03/13	16:00:18	AQUADOPP	19.2 kBa	aud commu	unicati	on channe	el clos	sed

Figure 3.1-17: Bench Tests Menu Option <6> Aquadopp DVS Tilt & Compass

Inserting the Mooring Cable in the Aquadopp II Hinge Plate

The Mooring Wire is inserted in the Aquadopp II hinge plate prior to deployment.

- 1. Place the MMP in a sling or other supported surface and remove the Top skin.
- 2. Using a hex driver, remove the four plastic screws from the Aquadopp II hinge plate.

Figure 3.1-18: Remove Four Plastic Screws

3. With the screws removed, swing the hinge plate open.

Figure 3.1-19: Positioning the Mooring Wire

- 4. Position the mooring wire under the Aquadopp II and through to the cable guide.
- 5. Close the hinge and re-secure the four plastic screws.

Removing the Aquadopp II from the MMP

To disconnect and remove the Aquadopp II from the Profiler, complete the following steps:

- 1. Lay the MMP on its side on a stable surface and remove the Top skin.
- 2. Using a hex driver, loosen only the four outer screws that connect the sensor to the hinge plate mount and slide the Aquadopp II from the hinge plate.

Do not remove any other screws, they will disassemble the sensor.

3. Using an Allen Wrench, (included in the toolkit), remove the screws from the Aquadopp II hinge plate and remove the plate.

Figure 3.1-20: Loosen Four Screws

Figure 3.1-21: Unscrew from Hinge Plate

- 4. Using an Allen wrench, loosen the four screws that secure the Aquadopp II at the back of the hinge plate mount.
- 5. Detach the bulkhead connector from the Aquadopp II.

Figure 3.1-22: Loosen Back Screws

Figure 3.1-23: Detach Bulkhead Connector

6. Slide the Aquadopp II out the front of the mount.

Connecting the Aquadopp II Sensor

To re-install the Aquadopp II sensor, complete the following steps:

- 1. Slide the Aquadopp II back into the hinge plate mount.
- 2. Connect the bulkhead connector. The profiler cable plugs into the connector labeled 'R'. The dummy plug connects to the slot labeled 'E'.

Figure 3.1-24: Reconnect Bulkhead Connector

Figure 3.1-25: Connect Bulkhead Connector

- 3. Secure the screws that fasten the Aquadopp II to the hinge plate mount.
- 4. Tighten the screws that secure the hinge plate mount to the MMP.

Figure 3.1-26: Tighten Back Screws

Figure 3.1.27: Secure to Hinge Plate

Figure 3.1.28: Tighten Hinge Plate Screws

- 5. Tighten the screws that secure the hinge plate mount to the MMP.
- 6. Re-attach MMP skin.

Notes

Section 3.2 AquaPro HR ACM Sensor

The Nortek AquaPro (HR) integration is a prototype implementation on the MMP. The AquaPro (HR) is a customized interface and <u>does not</u> follow the standard conventions of MMP sensor interactions. Although support for this sensor was first available in v4.18, continued development of this sensor integration has required firmware changes on both the MMP controller and the AquaPro. Contact McLane for details before planning a deployment with an AquaPro series sensor. AquaPro stores all data on the sensor and does not transfer data to the MMP controller at the end of the profile. The data stored on the AquaPro must be retrieved after deployment recovery. Contact Nortek for instructions for retrieval and processing of the data file(s).

The user configures AquaPro directly. Refer to the Nortek AquaPro documentation for more detailed instructions about sensor configuration.

Figure 3.2-1: MMP with AquaPro/Aquadopp HR Sensor

Using Bench Test Options

The main Bench Tests and AquaPro HR Bench Tests menus provide options to verify and change sensor settings prior to deployment. The main Bench Tests Menu displays only options that are available to installed sensors.

1. From the main Profiler Menu type 5 at the prompt to display the Bench Tests Menu.

Config: MPP_IM_CT	CF2 V5.14	of Jun	2 2014
McLa	ane Research Laboratories, USA		
	Pattern Profiler		
	S/N: ML13145-071		
	Pattern Profiler		
	Main Menu		
	Fri Jun 6 13:20:13 2014		
<1> Set Time	<5> Bench Test		
<2> Diagnostics	<6> Deploy Profiler		
<3> Flash Card Ops	<7> Offload Deployment Data		
<4> Sleep	<8> Contacting McLane		
<c> Configure</c>			
Selection [] ?			

Figure 3.2-2: Profiler Main Menu

Config: MPP_IM_CT C	F2 V5.14	of Jun	2 2	014
Pattern Profiler				
Bench Tests				
Fri Jun 6 13:20:17 2	014			
CTD utilities:				
<pre><1> Seabird 41CP-IDO CTD communication <2> Seabird 41CP-IDO CTD pressure</pre>				
<3> Seabird 41CP-IDO CTD average pressu	re			
<4> Seabird 41CP-IDO CTD temperature re	cord			
<5> Nortek AquaDopp DVS communication <6> Nortek AquaDopp DVS tilt & compass				
System evaluation: <7> Motor operation <8> Set Brake <9> Independent Watchdog <d> Detailed schedule <s> Recover schedule</s></d>				
Sensor & Option tests:				
<i> Seabird Inductive Modem Exit:</i>				

Figure 3.2-3: Profiler Bench Tests Main Menu

- 2. From the main Bench Tests menu type 5 at the prompt to display the Nortek Aquadopp Bench Test Menu.
- 3. Type *1* to connect directly.

	tion [] '	? 5							
Config:	MPP_IM_0	CT_CM_PA_SC_M	IP	CF2	V5.12	of	Feb	11	2014
	-	Pat	tern Proi	filer		-			
		AQUADOP	P Bench 1	Test Mei	nu				
		Tue Mar	11 15:39:	:47 201	4	_			
<1>	Direct (communication	s (19200	Baud)					
<2>	restore	McLane param	eters						
<3>	restore	Factory para	meters						
<4>	Report p	parameter set	tings						
<5>	Perform	a profile te	st loop						
<6>	Set sam	pling rate (1	Hz)						
<7>	Set Aqua	aDopp clock							
<8>	Read Aq	uaDopp clock							
	Eraco c	angar data							

Figure 3.2-4: AquaPro Bench Test Menu

The Profiler communicates with the Aquadopp (HR) at 9600 baud. If this rate is changed (for example after sensor manufacturer servicing) communicating directly with the sensor displays unrelated characters or a communication error (Figure 3-2-5). Fix the error by changing the sensor to the baud rate the Profiler requires.

Figure 3.2-5: Baud Rate Communication Error Examples

Typing [CTRL]-[B] from the sensor-specific Bench Tests menu displays the Baud Rate menu (Figure 3-2-6). Use this menu option to temporarily connect at the sensor's current baud rate. Once connected to the sensor, change to the Profiler-required baud rate. Finally, exit the Baud Rate Menu to resume the communications session.

```
Config: MPP_IM_CT_CM_FL_TU_OP_MP CF2 V5.00 of Jan 10 2013

Pattern Profiler

Select new Baud rate

Fri Jan 11 13:48:30 2013

<1> 1200

<2> 2400

<3> 4800

<4> 9600

<5> 19200

<6> 38400

<7> 57600

<G> Go to COMM session

Selection [] ? g
```

Figure 3.2-6: Baud Rate Menu

Direct Connection to AquaPro HR

1. Type *1* to connect directly with the AquaPro.

```
Selection [M] ? 1
14:15:40 AQUADOPP Communication channels opened.
14:15:40 AQUADOPP Powered on. .....
14:15:41 AQUADOPP Sending command [ID]. .
14:15:42 AQUADOPP Identified as V3.11, AQD 9340.
14:15:42 AQUADOPP Powered off.
14:15:42 AQUADOPP Power-down delay .....
14:15:47 AQUADOPP Communication channels closed.
14:15:48 AQUADOPP Press ^C to terminate COMM session.
14:15:48 AQUADOPP Communication channels opened.
14:15:48 AQUADOPP Powered on.
HR-AQUAPRO
NORTEK 2010
Version 3.11
Command mode
[^C]
```

Figure 3.2-7: Option <1> AquaPro Communications

Halt Data Logging

Option <2> from the AquaPro Bench Test Menu halts data logging, to manually return the AquaPro to command mode (the AquaPro has two modes - Command and Logging). During the "Automated Sensor Verification" the AquaPro is set to logging mode. Each time the AquaPro powers on, the mode last in continues.

This option requires the password *mclane*. This command is password protected to avoid accidentally disabling the AquaPro logging.

```
Selection [M] ? 2 Password: mclane
14:15:31 AQUADOPP Communication channels opened.
14:15:31 AQUADOPP Powered on. ....
14:15:32 AQUADOPP Sending command [ID]..
14:15:32 AQUADOPP Identified as V3.11, AQD 9340.
14:15:32 AQUADOPP Powered off.
14:15:32 AQUADOPP Power-down delay .....
14:15:37 AQUADOPP Communication channels closed.
```

Figure 3.2-8: Option <2> Halt Data Logging

Manual AquaPro Clock Reset

Option <3> (not shown) from the Aquadopp Bench Test menu provides a way to manually reset the AquaPro clock to the Profiler real-time clock (RTC). Before each profile, the Profiler firmware automatically sets the AquaPro clock to the Profiler. This option provides a way to manually perform the clock reset for testing purposes.

Selecting <4> from the Aquadopp Bench Test Menu displays the AquaPro clock reading.

```
Selection [M] ? 4
14:16:02 AQUADOPP Communication channels opened.
14:16:03 AQUADOPP Powered on. .....
14:16:04 AQUADOPP Sending command [ID]..
14:16:04 AQUADOPP Identified as V3.11, AQD 9340.
14:16:05 AQUADOPP Reading clock as 05/10/11 14:15:56.
Aquadopp Clock Reading
14:16:05 AQUADOPP Powered off.
14:16:05 AQUADOPP Power-down delay .....
14:16:10 AQUADOPP Communication channels closed.
```


Perform Profile Test Loop

Option <5> from the Aquadopp Bench Test menu performs a profile test loop. This test simulates an automated sensor verification and a 5 minute profile.

```
Selection [M] ? 5
14:16:13 AQUADOPP Automated verification of sensor settings.
14:16:13 AQUADOPP Communication channels opened.
14:16:13 AQUADOPP Powered on. ....
14:16:15 AQUADOPP Sending command [ID]. .
14:16:15 AQUADOPP Identified as V3.11, AQD 9340.
14:16:15 AQUADOPP Sending command [SC].
14:16:15 AQUADOPP Setting clock to 05/10/11 14:16:15. .
14:16:17 AQUADOPP Reading clock as 05/10/11 14:16:16.
 Erase ALL AquaDopp data? Are you sure (Yes/No) [N] ? y
14:16:21 AQUADOPP Sending command [FO]. .
14:16:24 AQUADOPP Erased data.
14:16:24 AQUADOPP Sending command [SR]. .
14:16:27 AQUADOPP Started data logging.
14:16:27 AQUADOPP Powered off.
14:16:27 AQUADOPP Power-down delay .....
14:16:32 AQUADOPP Communication channels closed.
Press ^C to exit the loop
14:16:33 AQUADOPP Preparing for profile 0.
14:16:34 AQUADOPP Identified as V3.11, AQD 9340.
14:16:39 AQUADOPP 14:16:35 11.1Vb 20.2∞C 300.9H 27.1P 24.7R.
14:16:39 AQUADOPP Acquiring for 30 seconds.
14:17:16 AQUADOPP Data logging halted.
14:17:16 AQUADOPP Opening A0000000.DAT for profile 0.
14:17:16 AQUADOPP Writing 2 byte header for profile 0.
14:17:17 AQUADOPP Writing 440 byte data block for profile 0.
14:17:17 AQUADOPP Writing 448 byte trailer for profile 0.
14:17:17 AQUADOPP Closing A0000000.DAT for profile 0.
14:17:18 AQUADOPP Test profile 0 succeeded.
Press ^C to exit the loop
14:17:18 AQUADOPP Preparing for profile 1.
14:17:19 AQUADOPP Identified as V3.11, AQD 9340.
14:17:24 AQUADOPP 14:17:20 11.1Vb 20.2∞C 301.0H 27.1P 24.7R.
14:17:24 AQUADOPP Acquiring for 30 seconds.
```

Figure 3.2-10: Option <5> Perform a Profile Test Loop

AquaPro Heading, Pitch and Roll

Option <6> from the main Bench Test Menu 'Nortek Aquadopp DVS Tilt & Compass' provides heading, pitch and roll output for performing a spin test.


```
Selection [M] ? 6
 Displays Heading, Pitch & Roll outputs
 for use while mounting the ACM pressure housing.
 Press ^C to terminate operation.
14:14:36 AQUADOPP Communication channels opened.
14:14:36 AQUADOPP Powered on. ....
14:14:37 AQUADOPP Sending command [ID]. .
14:14:38 AQUADOPP Identified as V3.11, AQD 9340.
14:14:38 AQUADOPP Sending command [ST]. .
14:14:42 AQUADOPP 269.8 Heading, 27.2 Pitch, 24.7 Roll.
14:14:45 AQUADOPP 269.8 Heading, 27.2 Pitch, 24.7 Roll.
14:14:49 AQUADOPP 270.0 Heading, 27.2 Pitch, 24.8 Roll.
14:14:52 AQUADOPP 270.1 Heading, 27.1 Pitch, 24.7 Roll.
14:14:56 AQUADOPP 270.1 Heading, 27.1 Pitch, 24.7 Roll.
14:14:59 AQUADOPP 270.4 Heading, 27.2 Pitch, 24.7 Roll.
14:15:02 AQUADOPP 282.0 Heading, 27.1 Pitch, 24.7 Roll.
14:15:05 AQUADOPP 301.1 Heading, 27.1 Pitch, 24.7 Roll.
14:15:09 AQUADOPP 301.0 Heading, 27.2 Pitch, 24.6 Roll.
14:15:12 AQUADOPP 301.0 Heading, 27.2 Pitch, 24.7 Roll.
14:15:14 AQUADOPP Sending command [@@@@@K1W%!Q].
14:15:15 AQUADOPP Sending command [MC]. .
14:15:15 AQUADOPP Powered off.
14:15:16 AQUADOPP Power-down delay .....
14:15:21 AOUADOPP Communication channels closed.
```

Figure 3.2-11: Bench Tests Menu Option <6> Aquadopp DVS Tilt & Compass

Chapter 4 Falmouth Scientific ACM+ Sensor

The Falmouth Scientific Inc. acoustic current meter (ACM+) sensor is configurable to measure current velocity in 2 horizontal dimensions (2d) (north/south and east/west) and a third measurement during up/down motion (3d). The sensor has four "sting" fingers that extend at a 45° angle away from a central post. For more information, refer to the Falmouth Scientific Inc. website (www.falmouth.com) or contact Falmouth Scientific, Inc.

Figure 4-1: MMP with FSI ACM +

Sensor orientation is important. The ACM+ sting must point into the water flow for correct measurement.

Collecting Data with the FSI ACM+

A sample unpacked 3d ACM+ file is shown in Figure 4-2.

Sample rate: 2.0000 H	Iz		Thir	d Dimensi	Path Velocities					
Profile 2						Ļ		r ↓	Ţ	
MM-DD-YYYY HH:MM:SS	HDNG	ΤX	ТΥ	HX	ΗY	ΗZ	VPAB	VPCD	VPEF	VPGH
01-11-2013 16:15:17 01-11-2013 16:15:18 01-11-2013 16:15:18 01-11-2013 16:15:19 01-11-2013 16:15:19	290.55 289.23 290.03 289.00 289.82	3.02 1.80 1.72 1.72 1.65	-3.04 -0.35 -0.42 -0.35 -0.42	0.0724 0.0693 0.0754 0.0694 0.0764	-0.2763 -0.2790 -0.2787 -0.2792 -0.2812	-0.9584 -0.9578 -0.9574 -0.9577 -0.9566	0.05 0.32 0.18 -0.09 0.32	-3.58 -3.80 -3.49 -3.69 -3.53	1.54 1.49 1.80 1.84 1.53	1.88 1.97 1.90 1.85 1.97

Figure 4-2: FSI ACM+ Data

Configuring the Firmware to Use the FSI ACM+ Sensor

The MMP System Configuration menu specifies the active sensors. The Profiler firmware supports settings for both 2d and 3d FSI ACM+ measurements. To enable an FSI ACM+, complete the following steps:

- 1. From the Main Menu type *c* and enter the password *configure*. Select <2> Falmouth Scientific 3d ACM+ and then type *Y* to enable the sensor.
- 2. Select [X] to exit and save the entry.

Г

Config: MPP_IM_CT_CM_FL_TU_OP_MP CF2 V5.09 of Oct 19 2013
Pattern Profiler
System Configuration
Wed Nov 13 10.05.02 2013
System Parameters:
<0> Battery capacity 240 Ah <i> Telemetry ENABLED IMM @ 1200 baud</i>
Sensor Suite:
Connector J9:CTD <1> Seabird 52MP CTD ENABLED
Connector J5:ACM <2> Falmouth Scientific 3d ACM+ ENABLED FSI ACM 3d
Port J6:IMM <i> Telemetry</i>
Port J4:SSP BioSuite Triplet/PAR <j> Wetlabs ECO FLBBCD <n> Satlantic SUNA Nitrate <o> Aanderaa Optode ENABLED <u> bbe FluoroProbe <w> Wetlabs ECO BBFL2 <y> Wetlabs ECO FLBB2K <@> Wetlabs FLNTURTD</y></w></u></o></n></j>
Port J10:SPR <l> Wetlabs ECO FLBB(RT)/D <p> Biospherical PAR</p></l>
Port J7:TRB <t> Seapoint IR Turbidity ENABLED @ 5 samp/avg, Autogain</t>
Port J8:FLR <e> Seapoint CHL Fluorometer <f> Wetlabs CDOM Fluorometer</f></e>
Port J4i:SER <h> ProOceanus CH4 <m> OceanServer5000 MotionPack</m></h>
Port J5i:SER <k> ProOceanus CO2</k>
Exit: <x> Save changes <^C> Cancel changes</x>

Figure 4-3: System Configuration Menu

Using Bench Test Options

The main Bench Tests and FSI ACM+ Bench Tests menus provide options to verify and change sensor settings prior to deployment. The main Bench Tests Menu displays only options the are available to installed sensors.

1. From the main Profiler Menu, type 5 at the prompt to display the Bench Tests Menu.

Config:	MPP	_CT CF2 V5.00 of Jan 1	1 2013
		McLane Research Laboratories, USA	
		Pattern Profiler	
		S/N: ML12345-001	
		Main Menu	
		Tue Feb 19 07:16:21 2013	
	<1>	Set Time <5> Bench Test	_
	<2>	Diagnostics <6> Deploy Profiler	
	<3>	Flash Card Ops <7> Offload Deployment Data	
	<4>	Sleep <8> Contacting McLane	
	<c></c>	Configure	

Figure 4-4: Profiler Main Menu

Config: MPP_IM_CT_CM_FL_TU_OP_MP	CF2 V5.00	of Ja	an 10	2013
Pattern Profil	er	-		
Bench Tests				
20101 10000				
 Fri Jan 11 13:40:04	2013	-		
Sensor Utilities:				
<1> Seabird 52MP CTD communication				
<2> Seabird 52MP CTD pressure				
<3> Seabird 52MP CTD average pressure	3			
<4> Seabird 52MP CTD temperature reco	ord			
<5> Falmouth Scientific 3d ACM+ commu	unication			
<6> Falmouth Scientific 3d ACM+ tilt	& compass			
System Evaluation:				
<7> Motor operation				
<8> Set Brake				
<9> Independent Watchdog				
<0> Battery endurance				
<d> Detailed schedule</d>				
<s> Recover schedule</s>				
System Sensor & Option Tests:				
<i> Seabird Inductive Modem</i>				
<l> Wetlabs ECO FLBB(RT)/D</l>				
<m> OceanServer5000 MotionPack</m>				
<o> Aanderaa Optode</o>				
DALC.				

Figure 4-5: Profiler Bench Tests Menu

The sensor-specific Bench Tests menus are the same for the FSI 3d and 2d ACM settings. The examples shown in this section feature the ACM+.

- 2. From the main Bench Tests menu, Type 5 at the prompt to display the Falmouth Scientific 3d (or 2d) ACM+ Bench Test Menu.
- 3. Type *1* to connect directly with the ACM+.

Config:	MPP_IM_CT_CM_FL_TU_OP_MP CF2	V5.00 of Jan 10 2013
	Pattern Profiler Falmouth Scientific 3d ACM+ Bencl	n Test Menu
		3
<1> <2> <3> <5> <6> <7> <8> <9>	Direct communications (19200 Baud) Restore McLane parameters Restore factory parameters Report parameter settings Perform a profile test loop Set sampling rate (2 Hz) Set ACM+ clock Read ACM+ clock Erase sensor data	Direct Communication
<m></m>	return to previous Menu Selection [] ? 1	

Figure 4-6: ACM+ 3d Bench Tests Menu

The Profiler communicates with the FSI ACM+ at 19200 baud. If this rate is changed (for example after sensor manufacturer servicing) communicating directly with the sensor displays unrelated characters or a communication error (Figure 4-7). Fix the error by changing the sensor to the baud rate the Profiler requires.

	Pattern Profiler		
	Select new Baud rate		
 Fr:	 Jan 11 13:48:30 2013		
<1> 1200			
<2> 2400			
<3> 4800			
<4> 9600			
<5> 19200			
<6> 38400			
<7> 57600			

Figure 4-7: Baud Rate Communication Error Examples

Figure 4-8: Baud Rate Menu

Direct Sensor Connection

Once connected directly with the ACM+, typing commands at the command prompt provides additional sensor information.

```
Selection
           [] ? 1
1/11/13 13:48:34 FSI/ACM+ Press ^C to terminate COMM session.
01/11/13 13:48:34 SYSTEM Press ^B to change or confirm Baud rate.
01/11/13 13:48:35 FSI/ACM+ 19.2 kBaud communication channel opened.
01/11/13 13:48:35 FSI/ACM+ Powered on.
starting...
3DACM+ Acoustic Current Meter
Falmouth Scientific Inc.
(c) 2009-2012 All Rights Reserved
FW Version v3.20
S/N : 1024
USER ID : ML12936-02D
RS232 serial connection
Memory Card Initialized
Current RTC date/time : 2013-01-11 13:40:18
RTC TEMP = 17.50 C
Logging Ops Set
TILT is ON
COMP is ON
Fingers DOWN
0>
0>run
Running,
Fingers DOWN
Tilt function is ON Compass function is ON
Logging Ops Set
Continuous Ops Cleared
2013-01-11 13:40:43.5, -2.59, -45.00, -0.1848, 0.9828, 0.0009, -
15.21, 7.38, -50.25, -27.29
2013-01-11 13:40:45.0, -2.75, -45.00, -0.1850, 0.9827, 0.0009, -
        7.24, -49.49, -28.02
14.17,
2013-01-11 13:40:46.0, -2.35, -45.00, -0.1850, 0.9827, 0.0010, -
14.78,
        7.24, -48.85, -28.77
  • •
                                           Display shortened for brevity
```

Figure 4-9 3D ACM+ Communications

Restore McLane and Factory Settings

Option <2> and <3> from the Falmouth Scientific 3d ACM+ Bench Tests menu restore the McLane or FSI factory settings on the ACM+ sensor. Using option <2> requires the password *McLane* (the first three characters *MCL* can also be typed). Using option <3> (not shown) also requires a password. Contact McLane before resetting to the factory parameters.

```
Selection [] ? 2 Password: ***
01/11/13 14:01:20 FSI/ACM+ 19.2 kBaud communication channel opened.
01/11/13 14:01:20 FSI/ACM+ Powered on. .. .....
01/11/13 14:01:22 FSI/ACM+ Identified as V3.20, S/N 1024. .....
01/11/13 14:01:22 FSI/ACM+ Sending command [ECHO=ON].
01/11/13 14:01:22 FSI/ACM+ Sending command [USRID=ML12936-02D]. .
01/11/13 14:01:23 FSI/ACM+ Sending command [SRATE=2]. .
01/11/13 14:01:23 FSI/ACM+ Sending command [ERASE]. .
01/11/13 14:01:23 FSI/ACM+ Sending command [LOG=ON]. .
01/11/13 14:01:23 FSI/ACM+ Sending command [VBOSE=ON]. .
01/11/13 14:01:24 FSI/ACM+ Sending command [COPS=OFF]. .
01/11/13 14:01:24 FSI/ACM+ Sending command [VEL=ON]. .
01/11/13 14:01:24 FSI/ACM+ Sending command [COMP=ON]. .
01/11/13 14:01:25 FSI/ACM+ Sending command [TILT=ON]. .
01/11/13 14:01:25 FSI/ACM+ Sending command [TSTMP=ON]. .
01/11/13 14:01:25 FSI/ACM+ Sending command [HDNG=ON]. .
01/11/13 14:01:25 FSI/ACM+ Sending command [TX=ON]. .
01/11/13 14:01:26 FSI/ACM+ Sending command [TY=ON]. .
01/11/13 14:01:26 FSI/ACM+ Sending command [HX=ON]. .
01/11/13 14:01:26 FSI/ACM+ Sending command [HY=ON]. .
01/11/13 14:01:26 FSI/ACM+ Sending command [HZ=ON]. .
01/11/13 14:01:26 FSI/ACM+ Sending command [VPATH=ON]. .
01/11/13 14:01:27 FSI/ACM+ Sending command [SAVE]. .
01/11/13 14:01:27 FSI/ACM+ Powered off.
01/11/13 14:01:27 FSI/ACM+ 19.2 kBaud communication channel closed.
01/11/13 14:01:28 FSI/ACM+ Was able to restore McLane parameters.
```

Figure 4-10: <2> Restore McLane Parameters

The firmware requires the settings configured by McLane. Changing settings, or resetting to the factory settings prevents the FSI 3D ACM+ sensor from working correctly with the profiler.

Display Current Settings

Option <4> displays the current FSI 3D ACM+ settings.

```
Selection [] ? 4
01/11/13 13:50:15 FSI/ACM+ 19.2 kBaud communication channel opened.
01/11/13 13:50:15 FSI/ACM+ Powered on. .. .....
01/11/13 13:50:17 FSI/ACM+ Identified as V3.20, S/N 1024. .....
01/11/13 13:50:18 FSI/ACM+ Sending command [RCFG]. .....
VER=3.20
Current RTC date/time : 2013-01-11 13:41:59
RTC TEMP = 17.75 C
Current DDATE yyyy-mm-dd : 2012-12-14
Current DTIME hh:mm:ss : 11:35:25
Wake time/date passed
ITIME: 00:00:00
OTIME: 00:00:00
Averaging Interval: 00:00
CRC=OFF
VEL=ON
COMP=ON
TILT=ON
NRML=ON
SRATE=2.0000Hz
id, avn, ave, avu, aspd, avdir, atlt, TSTMP, ctd, hdng, batt, vx, vy, vz, TX, TY, HX, HY, HZ, vn, ve
,vu,stemp,sv,spres,aux1,aux2,VPATH 43
LOG=ON
Address ops clear
COPS=OFF
OPEN MODE Keyboard Idle Time = 5 Minutes
0>
Press any key to continue.
01/11/13 13:50:23 FSI/ACM+ Sending command [RCAL]. .....
S/N=1024
VER=3.20
CDATE=26NOV12
USER ID=ML12936-02D
```

Figure 4-11: <4> Report Parameter Settings (screen 1 of 2)


```
LAT=41.6586685
LON=-70.6105270
DECL= 0.000000
ABOF=-1.083200e+00
CDOF=-1.638578e+00
EFOF=8.051894e-01
GHOF=1.997222e+00
ABSL=1.000000e+00
CDSL=1.000000e+00
EFSL=1.000000e+00
GHSL=1.000000e+00
K1=4.960472e-01
K2=-2.982793e-01
K3=0.000000e+00
K4=0.00000e+00
K5=4.876101e-01
K6=-2.937588e-01
K7=0.000000e+00
K8=0.000000e+00
T0=0.000000e+00
SAL=0.000000e+00
DBAR=0.000000e+00
STOFF=0.000000e+00
STSLP=9.675000e-03
VELXS=0.000000e+00
ZHX=-6.988999e+02
ZHY=5.435000e+01
ZHZ=6.565000e+01
T11=1.657487e-04
T21=-5.302293e-07
T12=9.749364e-07
T22=1.528757e-04
T13=-1.218257e-06
T23=-1.148897e-06
T31=2.149869e-06
T32=5.860501e-07
T33=1.565859e-04
DEX=0.000000e+00
DEY=0.000000e+00
DEZ=0.000000e+00
0>
Press any key to continue.
01/11/13 13:50:29 FSI/ACM+ Powered off.
01/11/13 13:50:29 FSI/ACM+ 19.2 kBaud communication channel closed.
```

Figure 4.12: <4> Report Parameter Settings (screen 2 of 2)

Perform Profile Test Loop

Option <5> (not shown) runs a profile test loop. This test simulates an automated sensor verification and 5 minute profile.

Set Sampling Rate

Option <6> from the ACM+ Bench Test Menu changes the sensor sampling rate. The default sampling rate is 2Hz.

Selectio	on [] ? 6		
Enter ne	ew ACM+ sampling ra	ate (1-10) [4] ? 3	
Config:	MMP_CT_CM	CF2 V5.13	of Apr 16 2014
	St	tandard Profiler	
	Falmouth Scient	tific 3d ACM+ Bench Test	Menu
	Thu Aj	pr 17 13:58:45 2014	_
<1>	Direct communicat:	ions (19200 Baud)	
<2>	restore McLane par	rameters	
<3>	restore Factory pa	arameters	
<4>	Report parameter :	settings	
<5>	Perform a profile	test loop	
<6>	Set sampling rate	(3 Hz) Sampi	ing Rate Changed to 3Hz
<7>	Set ACM+ clock		
<8>	Read ACM+ clock		
<9>	Erase sensor data		

Figure 4-13: <6> Set Sampling Rate

Manual ACM+ Clock Reset

Option <7> (not shown) from the ACM+ Bench Test menu provides a way to manually reset the ACM+ clock to the Profiler real-time clock (RTC). Before each profile, the Profiler firmware automatically sets the Aquadopp clock to the Profiler clock. This option provides a way to manually perform the clock reset for testing purposes.

Selecting <8> (not shown) from the ACM+ Bench Test Menu displays the ACM+ clock reading.

Erase Sensor Data

Option <9> (not shown) from the ACM+ Bench Test Menu provides a way to manually clear the data from the ACM+ SD storage card. At the start of each deployment, the Profiler firmware automatically commands the ACM+ to erase the data stored internally. This option provides a manual way to clear the data from the ACM+ internal storage for testing purposes. Selecting <M> returns to the previous menu.

Additional Sensor-Specific Test Options

From the main Bench Tests menu additional options can be selected for heading, pitch and roll output. This data can be used to perform a spin test.

Config: MPP_IM_CT_CM_FL_TU_OP_MP CF2 V5.00 of Jan 10 2013 Pattern Profiler Bench Tests Fri Jan 11 13:40:04 2013 Sensor Utilities: <1> Seabird 52MP CTD communication <2> Seabird 52MP CTD pressure <3> Seabird 52MP CTD average pressure <4> Seabird 52MP CTD temperature record <5> Falmouth Scientific 3d ACM+ communication Additional <6> Falmouth Scientific 3d ACM+ tilt & compass ▰ **Test Option** System Evaluation: <7> Motor operation <8> Set Brake <9> Independent Watchdog <0> Battery endurance <D> Detailed schedule <S> Recover schedule System Sensor & Option Tests: <I> Seabird Inductive Modem <L> Wetlabs ECO FLBB(RT)/D <M> OceanServer5000 MotionPack <O> Aanderaa Optode Exit: <X> Main Menu

Figure 4-14: Main Bench Tests Menu

FSI 3D ACM+ Tilt and Compass

Option <6> from the main Bench Tests menu provides heading, pitch and roll output.

```
Selection [] ? 6
 Expecting FSI/ACM+ at 19200 baud. Change [N] ?
01/11/13 13:51:29 FSI/ACM+ 19.2 kBaud communication channel opened.
01/11/13 13:51:30 FSI/ACM+ Powered on.
           ****
01/11/13 13:51:30 FSI/ACM+ Executing scripted commands. Please wait...
starting...
3DACM+ Acoustic Current Meter
Falmouth Scientific Inc.
(c) 2009-2012 All Rights Reserved
FW Version v3.20
S/N : 1024
USER ID : ML12345-02D
RS232 serial connection
Memory Card Initialized
Current RTC date/time : 2013-01-11 13:43:13
RTC TEMP = 17.75 C
Logging Ops Set
TILT is ON
COMP is ON
Fingers DOWN
0>
01/11/13 13:51:36 FSI/ACM+ ERROR! Didn't receive expected response from [
] command.
01/11/13 13:51:36 FSI/ACM+ Completed scripted commands.
01/11/13 13:51:36 FSI/ACM+ Press ^C to terminate COMM session.
01/11/13 13:51:36 SYSTEM Press ^B to change or confirm Baud rate.
                                                 НX
           TIME
                   HEADING
                                ТΧ
                                         ΤY
   DATE
                                                         ΗY
                                                                 ΗZ
0>
0>
0>run
Running,
Fingers DOWN
Tilt function is ON Compass function is ON
Logging Ops Set
Continuous Ops Cleared
2013-01-11 13:43:34.0,
                      -2.59, -45.00, -0.1847, 0.9828, 0.0008, -14.36,
7.35, -49.62, -28.13
                      -2.35, -45.00, -0.1847, 0.9828, 0.0012, -13.90,
2013-01-11 13:43:36.5,
7.21, -50.85, -29.14
. .
[^C]
01/11/13 13:52:00 FSI/ACM+ Powered off.
01/11/13 13:52:00 FSI/ACM+ 19.2 kBaud communication channel closed.
```

Figure 4-15: Option <6> Falmouth Scientific 3d ACM+ tilt & compass

Installing the ACM+ Sting and Attaching to the Mooring Cable

The Profiler ships with the FSI ACM+ sting secured inside the crate. Before deploying the Profiler, the ACM+ sting must be oriented and attached to the hinged bracket extending forward of the MMP body. The hinged bracket swings out of the way when the mooring cable is inserted and allows the cable to pass beneath.

The ACM bracket aligns the ACM+ sensor and mooring cable on the center line to properly position the MMP for taking measurements in relatively undisturbed flow. The ACM+ fingers are labeled +X, +Y, -X, -Y for orientation. An off-center alignment introduces a left-right bias in the flow measurement because the sting is not symmetrically aligned with the flow streamlines around the body of the MMP.

Installing the ACM+ Sting

- 1. Place the MMP in a sling or other supported surface on its side and remove the MMP skin.
- Mount the sting with the -Y finger up. After the sting base plate is placed and the four bolts are finger-tightened (Figure 4-16), twist the sting and align it with the +Y and -Y fingers on a vertical plane and the +X and -X fingers on a horizontal plane.

Figure 4-16: Tighten ACM+ Sting

3. Lay the oil-filled cable through the slot in the port side of the MMP skin and along the grooves in the frame ribs and spacer posts and thread through the narrow slot in the hinged bracket. Do not force the cable immediately adjacent to the sting base plate through the slot.

The oil filled cable connecting the ACM+ sting to the ACM+ electronics housing is fragile. Gently maneuver this cable. Do not pull on or introduce a tight bend in the cable and avoid crimping the outer tube. Damage to the cable must be repaired by the manufacturer..

- 4. Release enough cable from the interior of the MMP so that the sting base plate is 15cm (6") from the slot.
- 5. Squeeze the cable gently with two fingers, aligning the interior wires so that they do not cross over each other, and slide the cable through the slot.
- 6. Re-attach screws to secure ACM+ sting. The hinged bracket is attached so that the sting will rest in position when the MMP is on the starboard (right) side.
- 7. Coil excess cable inside the Profiler and secure the cable to the hinged bracket with a plastic tie-wrap (Figure 4-17). Securing cable minimizes contact with the mooring cable running inside the bracket. The corner of the bracket has a hole to attach the tie-wrap. Reattach the MMP skin.

Figure 4-17: Secure Excess Cable

Inserting the Mooring Cable

- 1. Place the MMP in a sling or other supported surface on its side.
- 2. Using a hex driver, loosen the socket head nylon cap screws from the ACM+ hinged bracket.

When securing and orienting the ACM+, place the MMP starboard (right) side down (with the McLane label visible on the drive motor). This position prevents the ACM+ sting from pivoting down when loosening the cap screws that secure the hinged mounting bracket.

3. Lift the hinged bracket and swing the ACM+ sting out of the way.

Figure 4-18: Releasing Hinged Mounting Bracket

- 4. Insert the mooring cable through the hinged bracket.
- 5. Reattach and tighten the socket head nylon cap screws to the hinged bracket.

Removing the ACM+ Electronics Housing

If it is necessary to remove the ACM+ electronics housing, complete the following steps:

- 1. Remove the port (left) side of the MMP skin
- 2. Move other sensors such as the CTD out of the way.
- 3. Unscrew the two socket head nylon cap screws securing the ACM+ clamp to the angle brace and remove the clamp and ACM+ housing together.
- 4. Loosen the four, recessed, socket head nylon cap screws to release the ACM+ housing from the clamp.

Figure 4-19: Correct Positioning of ACM+ Electronics Housing

Reinstalling the ACM+ Electronics Housing

To reinstall the ACM+ electronics housing, complete the following steps:

- Locate the milled depression in the top face of the end cap. The depression may be hidden under a label or there may be a label with an arrow indicating its location or direction. The ACM+ electronics housing should be mounted so that the depression points towards the front of the profiler.
- Locate the mounting holes in the clamp to determine its orientation relative to the MMP frame.
- 3. Place the housing in the clamp and twist it to orient the milled depression to the front face of the clamp.
- 4. Tighten the clamp and reinstall the clamp/housing assembly.

Chapter 5 Nobska MAVS ACM Sensor

MMP Release v3.31 firmware and higher supports the Nobska Modular Acoustic Velocity Sensor (MAVS) Acoustic Current Meter (ACM). The MAVS is a self-logging sensor. Contact Nobska (www.nobska.net) for more information about the MAVS ACM sensor, firmware menus and communications protocol.

Figure 5-1: MMP with MAVS ACM

Collecting Data with the Nobska MAVS ACM

When a profile starts, the MMP communicates with the MAVS and begins MAVS ACM data collection. At the end of each profile, the MMP communicates with the MAVS again to retrieve collected ACM data.

The MAVS user documentation contains information about the MAVS communications protocol.

Profile 3									
pth0	pth1	pth2	pth3	MX	MY	MZ	P	R	
-0.6	-1.0	-0.6	0.0	-0.07	-0.20	-0.98	0.9	0.5	
-0.7	-0.6	-0.4	-0.1	-0.08	-0.18	-0.98	0.8	0.5	
-0.7	-0.5	-0.3	0.0	-0.08	-0.18	-0.98	0.8	0.4	
-0.7	-0.5	-0.3	0.1	-0.07	-0.20	-0.98	0.8	0.5	
-0.6	-0.7	-0.4	0.0	-0.07	-0.20	-0.98	0.8	0.5	
-0.7	-0.7	-0.2	0.1	-0.08	-0.20	-0.98	0.8	0.4	
-0.7	-0.7	-0.3	0.0	-0.07	-0.20	-0.98	0.8	0.5	
-0.8	-0.7	-0.4	0.2	-0.07	-0.22	-0.97	0.8	0.4	
-0.7	-0.7	-0.3	0.1	-0.07	-0.20	-0.98	0.8	0.5	
-0.7	-0.7	-0.6	0.1	-0.07	-0.20	-0.98	0.8	0.4	
-0.6	-0.7	-0.3	0.1	-0.07	-0.22	-0.97	0.8	0.5	
· · · 🖌						chartanad	for brovi	t u	
-0.8	-0.7	0.1	0.1	-0.31	-0.21	-0.93	0.7	^{vy} 0.5	
-1.1	-0.8	-0.3	-0.4	-0.29	-0.19	-0.94	0.8	0.4	
-0.8	-0.8	-0.1	0.0	-0.31	-0.19	-0.93	0.9	0.4	
0 5	0 1	a a		0 00				0 5	
-0.5	-0.4	0.2	0.2	-0.30	-0.19	-0.93	0.7	0.5	
-0.5	-0.4 -1.1	0.2 -0.4	0.2	-0.30 -0.31	-0.19 -0.19	-0.93 -0.93	0.7 0.8	0.5	
-0.5 -1.1 -1.0	-0.4 -1.1 -0.8	0.2 -0.4 -0.3	-0.4 -0.2	-0.30 -0.31 -0.30	-0.19 -0.19 -0.21	-0.93 -0.93 -0.93	0.7 0.8 0.8	0.5 0.5 0.5	
-0.5 -1.1 -1.0 -0.6	-0.4 -1.1 -0.8 -0.6	0.2 -0.4 -0.3 0.0	-0.2 -0.4 -0.2 0.0	-0.30 -0.31 -0.30 -0.31	-0.19 -0.19 -0.21 -0.19	-0.93 -0.93 -0.93 -0.93	0.7 0.8 0.8 0.7	0.5 0.5 0.5 0.5	
-0.5 -1.1 -1.0 -0.6 -0.9	-0.4 -1.1 -0.8 -0.6 -0.5	0.2 -0.4 -0.3 0.0 0.1	0.2 -0.4 -0.2 0.0 -0.1	-0.30 -0.31 -0.30 -0.31 -0.31	-0.19 -0.19 -0.21 -0.19 -0.19	-0.93 -0.93 -0.93 -0.93 -0.93	0.7 0.8 0.8 0.7 0.8	0.5 0.5 0.5 0.5	
-0.5 -1.1 -1.0 -0.6 -0.9 Profile 3	-0.4 -1.1 -0.8 -0.6 -0.5	0.2 -0.4 -0.3 0.0 0.1	0.2 -0.4 -0.2 0.0 -0.1	-0.30 -0.31 -0.30 -0.31 -0.31	-0.19 -0.19 -0.21 -0.19 -0.19	-0.93 -0.93 -0.93 -0.93 -0.93	0.7 0.8 0.8 0.7 0.8	0.5 0.5 0.5 0.5 0.5	
-0.5 -1.1 -1.0 -0.6 -0.9 Profile 3 ACM turne	-0.4 -1.1 -0.8 -0.6 -0.5 d on at (0.2 -0.4 -0.3 0.0 0.1	0.2 -0.4 -0.2 0.0 -0.1 3 16:01:3	-0.30 -0.31 -0.30 -0.31 -0.31	-0.19 -0.19 -0.21 -0.19 -0.19	-0.93 -0.93 -0.93 -0.93 -0.93	0.7 0.8 0.8 0.7 0.8	0.5 0.5 0.5 0.5 0.5	
-0.5 -1.1 -1.0 -0.6 -0.9 Profile 3 ACM turne ACM turne	-0.4 -1.1 -0.8 -0.6 -0.5 d on at (0.2 -0.4 -0.3 0.0 0.1 06/21/201: 06/21/201:	0.2 -0.4 -0.2 0.0 -0.1 3 16:01:3	-0.30 -0.31 -0.30 -0.31 -0.31	-0.19 -0.19 -0.21 -0.19 -0.19	-0.93 -0.93 -0.93 -0.93 -0.93 -0.93	0.7 0.8 0.8 0.7 0.8	0.5 0.5 0.5 0.5	
-0.5 -1.1 -1.0 -0.6 -0.9 Profile 3 ACM turne ACM turne	-0.4 -1.1 -0.8 -0.6 -0.5 d on at (d off at	0.2 -0.4 -0.3 0.0 0.1 06/21/2013 06/21/2013	$\begin{array}{c} 0.2 \\ -0.4 \\ -0.2 \\ 0.0 \\ -0.1 \end{array}$ $\begin{array}{c} 3 \ 16:01:3 \\ 13 \ 16:06: \end{array}$	-0.30 -0.31 -0.30 -0.31 -0.31 6 48	-0.19 -0.19 -0.21 -0.19 -0.19	-0.93 -0.93 -0.93 -0.93 -0.93 -0.93	0.7 0.8 0.8 0.7 0.8	0.5 0.5 0.5 0.5	

Figure 5-2: MAVS ACM Data

If the MAVS fails to communicate with the Profiler, the deployment continues but no data is logged for the MAVS.

Configuring the Firmware to Use the MAVS ACM

The MMP System Configuration menu specifies the active sensors. The MAVS sensor version must also be specified. Contact Nobska (www.nobska.net) with questions about your MAVS firmware version. To enable a MAVS ACM, complete the following steps:

- 1. From the Main Menu type *c* and enter the password *configure*. Select <2> Nobska MAVS ACM and then type *Y* to enable the sensor.
- 2. Select *X* to exit and save the entry.

Config: MMP_CT_CM	CF2 V	5.03 of May	8 2013
Sta	andard Profiler cem Configuration		
 Fri Jur	21 11:35:54 2013		
System Parameters: <0> Battery capacity <d> File Deletion <i> Inductive Telemetry</i></d>	240 Ah		
Sensor Suite:			
Connector J9:CTD <1> Seabird 52MP CTD	ENABLED		
Connector J5:ACM <2> Nobska MAVS ACM	ENABLED	mavs41p0 🗲	Nobska MAVS
Connector J8:FLR <e> Seapoint CHL Fluorome <f> Wetlabs CDOM Fluorome</f></e>	eter		
Connector J7:TRB <t> Seapoint IR Turbidity</t>	7		
Connector J4:SSP BioSuite Triplet/PAR <n> Satlantic SUNA Nitrat <o> Aanderaa Optode <w> Wetlabs ECO BBFL2</w></o></n>	ce		
Connector J10:SPR <l> Wetlabs ECO FLBB(RT)/ <p> Biospherical PAR</p></l>	Ϋ́D		
Connector J4i:SER <m> OceanServer5000 Motic Exit:</m>	onPack		
<x> Save changes <^C> Selection [] ? 2</x>	Cancel changes		
Enable the "Nobska MAVS ACM Select 1 = 41p0, 2 = 41p1,	4" [Y] ? 3 = 41t1, 4 = 41t2	(1-4) [0] ?	1 MAVS Firmware ver

Figure 5-3: System Configuration Menu

Using Bench Test Options

The main Bench Tests and Nobska MAVS Bench Tests menus provide options to verify and change sensor settings prior to deployment. The main Bench Tests Menu displays only options the are available to installed sensors.

1. From the main Profiler Menu, type 5 at the prompt to display the Bench Tests Menu.

Config:	MPP C	Т	CF2 V5.00 of Ja	an 11 2	013
		McLane Resea	rch Laboratories, USA		
		Pat	tern Profiler		
		S/N	: ML12345-001		
			Main Menu		
		Tue Feb	19 07:16:21 2013		
	<1> S	et Time	<5> Bench Test		
	<2> D	agnostics	<6> Deploy Profiler		
	<3> F	lash Card Ops	<7> Offload Deployment Da	ata	
	<4> S	leep	<8> Contacting McLane		
	<c> C</c>	onfigure	_		

Figure 5-4: Profiler Main Menu

Config: MMP_CT_CM	CF2 V5	.03 0	of №	ſay	8	2013
Standard Profil	er					
Bench Tests						
Fri Jun 21 11:37:48	2013					
Sensor Utilities:						
<pre><1> Seabird 52MP CTD communication <2> Seabird 52MP CTD pressure <3> Seabird 52MP CTD average pressure <4> Seabird 52MP CTD temperature reco <5> Nobska MAVS ACM communication <6> Nobska MAVS ACM tilt & compass</pre>	rd					
System Evaluation: <7> Motor operation <8> Release Brake <9> Independent Watchdog <0> Estimate deployment endurance						
System Sensor & Option Tests:						
Exit: <x> Main Menu</x>						

Figure 5-5: Profiler Bench Tests Menu

- 2. From the main Bench Tests menu, type 5 at the prompt to display the Nobska MAVS Bench Test menu.
- 3. Type *1* to connect directly with the Nobska MAVS ACM.

Γ

Config:	MMP_CT_	_CM CF2 V5.03 of May 8 2013
		Standard Profiler NDC/MAVS Bench Test Menu
		Fri Jun 21 11:42:23 2013
<1> <3> <4> <5>	Direct Retriew Report Perform	communications (9600 Baud) — Direct Communications ve configuration files parameter settings n a profile test loop
<m></m>	return	to previous Menu
:	Selectio	on [] ? 1
)6/21/1)6/21/1	3 11:42: 3 11:42:	:26 NDC/MAVS Press ^X to terminate COMM session. :26 SYSTEM Press ^B to change or confirm Baud rate.

Figure 5-6: Nobska MAVS Bench Tests Menu

The Profiler communicates with the MAVS ACM at 9600 baud. If this rate is changed (for example after sensor manufacturer servicing) communicating directly with the sensor displays unrelated characters or a communication error (Figure 5-7). Fix the error by changing the sensor to the baud rate the Profiler requires.

Figure 5-7: Baud Rate Communication Error Examples

Figure 5-8: Baud Rate Menu

Direct Sensor Connection

Once connected directly to the MAVS, the MAVS firmware menus display (Figure 5-9). The MAVS Manual contains information about the MAVS communication protocol.

Pressing [CTRL]-[C] within 5 seconds is required to control the MAVS firmware and prevent autonomous MAVS operations from starting. Typing [CTRL]-[X] exits from the MAVS ACM Menus and returns to the MMP firmware. Typing [CTRL]-[S] from the Profiler MAVS Bench Test routines exits to the MAVS Bench Tests menu.


```
06/21/13 11:42:27 NDC/MAVS 9.6 kBaud communication channel opened.
06/21/13 11:42:27 NDC/MAVS Powered on.
   *****
                                      Sizing flash card (~2 seconds / 100 Mbytes) . . . done.
1024.295 Mbyte flash card installed
1024.262 Mbyte currently free
File system can accommodate 4091 data files
Initializing . . . done.
Loading system configuration information . . . done.
Loading deployment definition information . . . done.
Loading deployment history information . . . . done.
Setting Moored Profiler Mode . . . . . . . . done.
Storing system configuration information . . . done.
Storing deployment definition information . . . done.
The MAVS4 operating system is
initialized and running.
Type <CTRL>-<C> within 5 seconds
to assert operator control.
 5 seconds
 4 seconds
 3 seconds
 2 seconds
 1 seconds [^C]
 0 seconds
Checking power supply . . . done.
Current clock time: 01/01/1970 00:00:14
Change time & date (Yes/No) [N] ?
          Nobska Development Corp.
                   MAVS-4
       Modular Acoustic Velocity Sensor
                  Model 4
        Version: mavs41p0.c S/N: 10305
      Main Menu
      ſ
      »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕõõõ
           Thu Jan 1 00:00:18 1970
      <1> Set Time
                           <5> Bench Tests
      <1> Set Find
<2> Flash Card Ops <6> Deploy System
<3> Calibration <7> Offload Data
      <4> Low Power Sleep <8> Contact Nobska
        Selection 5
```

Figure 5-9: Nobska MAVS Direct Communications

Retrieve Configuration Files

Option <3> (not shown) from the MAVS Bench Tests menu copies the MAVS configuration files to the Profiler that are necessary for the Profiler Unpacker.

Report Parameter Settings

Option <4> from the MAVS Bench Tests menu displays the current MAVS parameters.

Figure 5-10: Nobska MAVS Direct Communications

Perform Profile Test Loop

Option <5> from the Nobska MAVS Bench Tests menu runs a profile test loop. This test simulates an automated sensor verification and a 5 minute profile.

Additional Sensor-Specific Test Options

From the main Bench Tests menu Option <6> displays the heading, pitch and roll output.

This data can be used to perform a spin test.

Config: MMP CT CM	CF2 V5.03	of May	8 2013
Standard Profil Bench Tests	er	_	
Fri Jun 21 11:37:48	3 2013	_	
Sensor Utilities:			
<pre><1> Seabird 52MP CTD communication <2> Seabird 52MP CTD pressure <3> Seabird 52MP CTD average pressure <4> Seabird 52MP CTD temperature reco <5> Nobska MAVS ACM communication <6> Nobska MAVS ACM tilt & compass</pre>	e ord	Ac	ditional Test Option
System Evaluation: <7> Motor operation <8> Release Brake <9> Independent Watchdog <0> Estimate deployment endurance			
System Sensor & Option Tests:			
Exit: <x> Main Menu</x>			

Figure 5-11: Main Bench Tests Menu

Nobska MAVS ACM Tilt and Compass

Compass/tilt options must be performed in the MAVS firmware menus as shown in Figure 5-11.

```
Selection [] ? 6
Tilt & compass operations for the Nobska MAVS ACM must be
performed through direct connection with that instrument.
```

Figure 5-12: Tilt/Compass Options must be performed in MAVS Firmware

Chapter 6 Wet Labs Optical Sensors – General Information

Wet Labs optical sensors collect a combination of optical measurements. Many sensitivity ranges can be ordered. There are many configurations available of similar units which result in different Model numbers. If you have questions about your specific model, consult the Wet Labs documentation that is included for your sensor.

Sensor Calibration

Wet Labs includes Calibration sheets with each sensor. Refer to the sensor-specific calibration information for guidelines.

Chapter Contents	
Section 6.1	Wet Labs BBFL2
Section 6.2	Wet Labs FLBB(RT/D) or FLBBCD
Section 6.3	Wet Labs C-Star

This chapter explains integration with Wet Labs sensors as follows:

The Wet Labs ECO series sensors (for example, BBFL2, FLBB(RT/D),

FLBBCD) have a similar configuration and interface screens. Consult your Wet Labs documentation for unit-specific parameters.

Configuring the Firmware to Use the Wet Labs Optical Sensors

The Profiler System Configuration menu specifies the active sensors. To enable a Wet Labs Optical sensor, complete the following steps:

- 1. From the Main Menu type c and enter the password configure.
- 2. Select an option to enable a Wetlabs sensor and then type *Y* to enable the sensor.

```
Config: MPP CT FL OP
                                       CF2 V5.24 of Oct 21 2015
                       Pattern Profiler
                      System Configuration
                   Thu Oct 22 09:33:36 2015
System Parameters:
                                   240 Ah
 <0> Battery capacity
Sensor Suite:
     Port J9:CTD
 <1> Seabird 52MP CTD ----- ENABLED
     Port J5:ACM
 <2> No ACM selected
     Port J6:IMM
 <I> Telemetry
     Port J4:SSP
 <B> BioSuite Triplet/PAR
 <J> Wetlabs ECO FLBBCD ----- ENABLED
 <N> Satlantic SUNA Nitrate
 <O> Aanderaa Optode
 <U> bbe FluoroProbe
 <W> Wetlabs ECO BBFL2
 <Y> Wetlabs ECO FLBB2K
 <0> Wetlabs FLNTURTD
     Port J10:SPR
 <L> Wetlabs ECO FLBB(RT)/D
 <P>> Biospherical PAR
 <$> WetLabs CST Transmissometer --- ENABLED @ 36 avg, ~0.99 Hz
     Port J7:TRB
 <T> Seapoint IR Turbidity
     Port J8:FLR
 <E> Seapoint CHL Fluorometer
 <F> Wetlabs CDOM Fluorometer
     Port J4i:SER
 <H> ProOceanus CH4
 <M> OceanServer5000 MotionPack
     Port J5i:SER
 <K> ProOceanus CO2
 <#> Aanderaa Optode ----- ENABLED
Exit:
 <X> Save changes <^C> Cancel changes
Selection [] ? x
```

Figure 6-1: System Configuration Menu

Using Bench Test Options

The main Bench Tests and Wet Labs Bench Tests menus provide options to verify and change sensor settings prior to deployment. The main Bench Tests Menu displays only options that are available to installed sensors.

1. From the main Profiler menu type 5 at the prompt to display Bench Tests Menu.

Config:	MPP	CT					CF2 V5.	.00 of	Jan	11	2013
			McLane F	Resea Pat	irch L tern	aborato Profile	ories, l er	JSA			
		-	S/N: ML12345-001 								
		-	Tue	Feb	19 07	:16:21	2013				
	<1>	Set	Time		<5>	Bench	Test <	┣───			
	<2>	Diag	gnostics		<6>	Deploy	y Profil	ler			
	<3>	Flas	sh Card (Dps	<7>	Offloa	ad Deplo	yment	Data	a	
	<4>	Slee	ep	-	<8>	Contac	cting Mo	Lane			
	<c></c>	Conf	figure								

Figure 6-2: Profiler Main Menu

Configuration, MMD IM CE CM DD CC	CE2 VE 00	of Nor	27 2012	
Configuration: MMP_IM_CT_CM_PA_SC	CF2 V5_00	OT NOV	21 2012	
Bench Tests		_		
Wed Nov 28 14:49:11	2012	_		
Sensor Utilities:				
<1> Seabird 52MP CTD communication				
<2> Seabird 52MP CTD pressure				
<3> Seabird 52MP CTD average pressure				
<4> Seabird 52MP CTD temperature reco	rd			
<5> Nortek AquaDopp DVS communication				
<6> Nortek AquaDopp DVS tilt & compas	s			
System Evaluation:				
<7> Motor operation				
<8> Set Brake				
<9> Independent Watchdog				
<0> Estimate deployment endurance				
Sensor & Ontion Tests.				
<i> Seabird Inductive Modem</i>				
<m> OceanServer5000 MotionPack</m>				
<p>> Biospherical PAR</p>				
<w> Wetlabs ECO BBFL2</w>				
Exit:				
<x> Main Menu</x>				
Selection ? w				

Figure 6-3: Profiler Bench Tests Menu

The sensor-specific Bench Tests menus are the same for the Wetlabs Optical sensors unless noted.

- 2. From the Bench Tests menu, type an option at the prompt to display the Wet Labs Bench Test menu (Figure 6-4).
- 3. Type *1* to connect directly with the Wet Labs Optical Sensor.

Config: MPP_IM_CT_CM_PA_SC_MP	CF2 V5.12 of Feb 11 2014
Patt WL/BBFL2	ern Profiler 2 Bench Test Menu
Tue Mar 1	1 15:43:56 2014
<1> Direct communications <2> Perform a profile tes	; (19200 Baud) st loop
<m> return to previous Me</m>	nu
Selection [] ? 1	
03/11/14 15:43:58 WL/BBFL2 attention.	Enter "!!!!!" (w/o quotes) to get sensor's
03/11/14 15:43:59 WL/BBFL2 03/11/14 15:43:59 SYSTEM	Press ^C to terminate COMM session. Press ^B to change or confirm Baud rate.

Figure 6-4: Wet Labs BBFL2 Bench Test Menu

Config: MPP_CT_FL_OP CF2 V5.24 of Oct 16 2015
Pattern Profiler Wetlabs CST Transmissometer Bench Test Menu
weehabb est fransmissioneeer benen fest hend
Tue Oct 20 10:42:25 2015
<pre><1> Direct communications (19200 Baud) Direct Communications <2> Perform a profile test loop <3> Set number of samples averaged (36 avg, ~0.99 Hz) <4> Offload C-Star data files</pre>
<m> return to previous Menu</m>
Selection [] ?

Figure 6-5: Wet Labs C-Star Bench Test Menu

The Profiler communicates with the Wet Labs Sensors at 19200 baud. If this rate is changed (for example after sensor manufacturer servicing) communicating directly with the sensor displays unrelated characters or a communication error (Figure 6-6). Fix the error by changing the sensor to the baud rate the Profiler requires.

Expecting WL/BBFL2 + at 19200 baud. Change [N] ? y _______Config: MPP_IM_CT_CM_FL_TU_OP_MP CF2 V5.00 of Jan 10 2013 _______Pattern Profiler Select new Baud rate ________ Fri Jan 11 13:48:30 2013 <1> 1200 <2> 2400 <3> 4800 <4> 9600 <5> 19200 <6> 38400 <7> 57600 <G> Go to COMM session Selection [] ? g

Figure 6-6: Baud Rate Communication Error Examples

Figure 6-7: Baud Rate Menu

Direct Sensor Connection

Once connected directly to the Wet Labs Optical sensor, typing commands at the command prompt provides additional sensor information. Figure 6-8 shows direct communication with the BBFL2 model. Figure 6-9 shows direct communication with the FLBB(RT)/D which works the same as the FLBBCD model.

```
Selection [] ? 1
03/11/14 15:43:58 WL/BBFL2 Enter "!!!!!" (w/o quotes) to get sensor's
attention.
03/11/14 15:43:59 WL/BBFL2 Press ^C to terminate COMM session.
03/11/14 15:43:59 SYSTEM Press ^B to change or confirm Baud rate.
03/11/14 15:44:00 WL/BBFL2 19.2 kBaud communication channel opened.
03/11/14 15:44:00 WL/BBFL2 Powered on.
12:43:277004130695190446012:43:297004130695190446012:43:307004130695190546012:43:317004130695190446012:43:3270041306951904460
03/11/14
                                                      4130
                                                             541
                                                     4130
03/11/14
                                                             540
03/11/14
                                                      4130
                                                             540
03/11/14
                                                     4130
                                                             539
03/11/14
                                                      4130
                                                             540
  · · 🔸

    Display shortened for brevity

          12:43:41 700 58
                                                      49
03/11/14
                                    695
                                          55
                                                460
                                                             538
03/11/14
           12:43:42
                        700 61
                                    695
                                          55
                                                460
                                                      65
                                                             538
03/11/14 12:43:43 700 59
                                    695 54 460 57
                                                            538
[^C]
03/11/14 15:44:19 WL/BBFL2 Powered off.
03/11/14 15:44:19 WL/BBFL2 19.2 kBaud communication channel closed.
```

Figure 6-8: <1> BBFL2 Direct Communications

In the FLBB(RT)/D example shown next, the third and fifth columns display the wavelength settings on the specific sensor model (refer to the Wet Labs manual for more information). Time and Date columns display '9s' as these columns are only placeholders. The last column displays the Temperature if this option is enabled on the sensor. Otherwise, the last column displays placeholder data (Figure 6-9).

Se	election [M] ? 1								
09:48:53	WL/FLBB Enter "	!!!!!"	(w/o વા	iotes)	to get	sensor's attention.			
Expectin	ng WL/FLBB at 19	200 bau	ıd. Char	nge (Ye	s/No) [N] ?			
09:48:55	WL/FLBB Press ^	C to te	erminate	e COMM	session				
09:48:56	WL/FLBB Communi	cation	channel	s open	ed.				
09:48:56	WL/FLBB Powered	l on.							
Fluorescence Turb wave-									
	wave-leng	gth _I		ngth	ΝΤυ	Temp (if option is installed)			
		. ★	. ↓	. ★	★	★			
99/99/99	99:99:99	695	56	700	78	547			
99/99/99	99:99:99	695	56	700	79	547			
99/99/99	99:99:99	695	55	700	78	546			
99/99/99	99:99:99	695	56 55	700	78	546			
99/99/99	99:99:99	695 695	50 54	700	77 77	546			
99/99/99	99:99:99	695	54	700	78	546			
99/99/99	99:99:99	695	55	700	85	546			
99/99/99	99:99:99	695	55	700	80	546			
99/99/99	99:99:99	695	54	700	690	546			
99/99/99	99:99:99	695	2248	700	4130	545			
99/99/99	99:99:99	695	2570	700	4130	545			
99/99/99	99:99:99	695	4109	700	4130	545			
99/99/99	99:99:99	695	4130	/00	4130	545			
•••									
99/99/99	99:99:99	695	53	700	76	532			
99/99/99	99:99:99	695	55	700	75	532			
99/99/99	99:99:99	695	54	700	75	532			
99/99/99	99:99:99	695	53	700	77	532			
!! Sor FIBBB	- 2350								
Ver FLNTU	1 4 08								
Ave 30	1.00								
Pkt 900									
11									
Şmnu									
:::: Śmnu									
[^C]									
******	****	******	******	*****	******	*****			
10:05:00	WL/FLBB Powered	l off.							
10:05:00	WL/FLBB Communi	cation	channel	s clos	ed.				

Figure 6-9: Direct Communication with the FLBB(RT)/D

Perform Profile Test Loop

Option <2> performs a profile test loop as shown in Figure 6-10. The test simulates an automated sensor verification and a 5 minute profile.

```
Selection ? 2

Scat Chlr CDOM

11/28/12 14:49:24 WL/BBFL2 4130 1950 4130.

11/28/12 14:49:24 SYSTEM Suspending until 11/28/12 14:49:35 ... Awake

11/28/12 14:49:40 WL/BBFL2 4130 1956 4130.

11/28/12 14:49:40 SYSTEM Suspending until 11/28/12 14:49:50 ... Awake

11/28/12 14:49:54 WL/BBFL2 4130 1956 4130.

11/28/12 14:49:54 SYSTEM Suspending until 11/28/12 14:50:05 ... Awake

11/28/12 14:50:09 WL/BBFL2 4130 1951 4130.

11/28/12 14:50:09 SYSTEM Suspending until 11/28/12 14:50:20 ... Awake
```

Figure 6-10: Option <2> Perform Profile Test Loop

Installing the Optical Wet Labs Sensors in the Mounting Space

Both the FLBB(RT)/D, FLBBCD and BBFL2 models are installed and removed using the same procedure. The Wet Labs FLBB(RT)/D and FLBBCD sensors are supported on the Profiler by a custom bracket that must be correctly positioned and tightened.

To install the Wet Labs BBFL2, complete the steps in section 6.1. To install the Wet Labs FLBB(RT/D) or FLBBCD, complete the steps in section 6.2. To install the Wet Labs C-Star, complete the steps in Section 6.3.

Figure 6-11: BBFL2 Model- Installed

Notes

Section 6.1 Wet Labs BBFL2 Sensor

MMP firmware release version 4.13 and higher supports the Wetlabs BBFL2 Optical sensor. The BBFL2 collects a combination of Scatter, Chlorophyll Fluorometer counts and CDOM Fluorometer counts. For additional information about the Wet Labs BBFL2 sensor, refer to the Wet Labs web site (www.wetlabs.com) or contact Wet Labs.

Figure 6.1-1: MMP with BBFL2 Installed – Side View

Collecting Data with the BBFL2

A sample unpacked Engineering file with BBFL2 data is shown below.

Profile 2										
Sensors were turned on at 12/07/2012 16:30:02 Vehicle began profiling at 12/07/2012 16:32:02										
Date,	[mA],	[V],	[dbar],	<pre>Par[mV],</pre>	scatSig,	chlSig,	CDOMSig			
12/07/2012 16:32:02	-30,	12.1,	0.800,	10.80,	70,	53,	99			
12/07/2012 16:32:08	-29,	12.1,	0.800,	12.80,	70,	52,	101			
12/07/2012 16:32:14	-30,	12.1,	0.800,	13.80,	71,	53,	100			
12/07/2012 16:32:19	-30,	12.1,	0.790,	14.00,	69,	55,	100			
12/07/2012 16:32:25	-30,	12.1,	0.800,	17.40,	71,	54,	99			
12/07/2012 16:32:31	-30,	12.1,	0.800,	11.40,	70,	53,	101			
Ramp exit: SMOOTH RUNNING Profile exit: STATIONARY EXPIRED Vehicle motion stopped at 12/07/2012 16:33:07 Sensor logging stopped at 12/07/2012 16:35:15										

Figure 6.1-2: ENG File with BBFL2 Data

Section 6.2 Wet Labs FLBB(RT)/D or FLBBCD Sensor

MMP firmware release version 4.30 and higher supports the Wet Labs FLNTRD/FLBB(RT)/D sensors, optical combination sensors that record fluorometer, turbidity and (if installed) temperature measurements. Firmware Release 5.19 and higher supports the FLBBCD, an optical sensor that records chlorophyll, backscatter and fluorescence in a single data stream.

Figure 6.2-1: MMP with FLBB(RT)/D Installed

Figure 6.2-2: MMP with FLBBCD Installed

Collecting Data with the FLBB(RT)/D

A sample unpacked Engineering file is shown in Figure 6.2-3. The temperature data displays in thermistors. When the optional FLBB(RT)/D temperature is not installed, the temperature data is not used.

ehicle began prot	filing at	07/21/20)11 15:16:1	⁶ FLBB((RT)/D Data	
Date Time	[mA]	[V]	[dbar]	♥ CHL	▼ ▼ NTU Tempe	, rature
7/21/2011 15:16:1	17 -8		0.00	3864	4130	540
7/21/2011 15:16:2	22 30	11.5	0.000	3866	4130	539
7/21/2011 15:16:2	27 33	11.5	0.000	3865	4130	539
7/21/2011 15:16:3	32 33	11.5	0.000	3866	4130	539
7/21/2011 15:16:3	37 33	11.5	0.000	3864	4130	539
7/21/2011 15:16:4	42 33	11.5	0.000	3864	4130	539
7/21/2011 15:16:4	47 33	11.5	-0.140	3861	4130	539
7/21/2011 15:16:5	56 32	11.5	-0.150	3861	4130	539
7/21/2011 15:17:0	05 33	11.5	-0.130	3862	4130	539
7/21/2011 15:17:1	14 32	11.5	-0.120	3860	4130	539
7/21/2011 15:17:2	23 32	11.5	-0.130	3859	4130	539
7/21/2011 15:17:3	32 32	11.5	-0.120	3857	4130	538
7/21/2011 15:17:4	41 32	11.5	-0.150	3858	4130	538
7/21/2011 15:17:5	50 32	11.5	-0.160	3858	4130	538
7/21/2011 15:17:5	59 32	11.5	-0.170	3858	4130	538
7/21/2011 15:18:0	08 32	11.5	-0.200	3858	4130	538
7/21/2011 15:18:1	17 32	11.5	0.000	3860	4130	538
Ramp exit: SMOOTH RUNNING Profile exit: TIMER EXPIRED						

Figure 6.2-3: Engineering File, FLBB(RT)/D Fluorometer, Turbidity and Temperature Data

Collecting Data with the FLBBCD

A sample unpacked Engineering file with FLBBCD data is shown in Figure 6.2-4.

Profile 2 FLBBCD Data								
Sensors were turned on at 10/22/2015 11:00:02 Vehicle began profiling at 10/22/2015 11:02:01								
Date 10/22/2015 11:02:01	[mA] 0	[V] 11.1	dbar] 0.000	Oxygen[uM] 0.00	Optode Temp[C] 0.00	Chl 54	bb 101	CDOM 84
10/22/2015 11:02:05	90	11.0	0.000	0.00	0.00	55	106	85
10/22/2015 11:02:09	136	11.0	0.000	0.00	0.00	57	105	87
10/22/2015 11:02:12	186	10.9	0.000	0.00	0.00	53	98	83
10/22/2015 11:02:16	187	10.9	0.000	0.00	0.00	52	97	81
10/22/2015 11:02:19	181	10.9	0.000	0.00	0.00	53	97	87
10/22/2015 11:02:23	176	10.9	0.000	0.00	0.00	51	94	84
10/22/2015 11:02:26	176	10.9	0.000	0.00	0.00	50	94	83
10/22/2015 11:02:30	182	10.9	0.000	0.00	0.00	52	93	84
10/22/2015 11:02:40	181	10.9	3.430	164.90	18.07	50	84	89
10/22/2015 11:02:48	165	10.9	4.270	164.98	18.06	51	84	88
10/22/2015 11:02:56	165	10.9	5.120	164.85	18.06	54	82	86
10/22/2015 11:03:04	151	10.9	5.960	164.86	18.06	53	80	84
10/22/2015 11:03:12	155	10.9	6.800	164.61	18.05	53	84	85
10/22/2015 11:03:20	158	10.9	7.640	164.61	18.05	53	79	85
10/22/2015 11:03:28	153	10.9	8.490	164.58	18.05	51	80	86
10/22/2015 11:03:36	147	10.9	9.320	164.49	18.04	52	82	85
10/22/2015 11:03:44	149	10.9	10.170	164.49	18.04	51	82	86
Ramp exit: SMOOTH RUNNING Profile exit: BOTTOM PRESSURE								
Vehicle motion stopped at 10/22/2015 11:03:45 Sensor logging stopped at 10/22/2015 11:05:52								

Figure 6.2-4: Engineering File, FLBBCD Chlorophyll, Backscatter and Fluorescence Data

Installing the FLBB(RT)/D or FLBBCD in the Mounting Space

To install the Wet Labs FLBB(RT)/D or FLBBCD sensor, complete the following steps.

1. With the MMP skin removed, connect the sensor cable and place the Wet Labs sensor in the mounting space.

Figure 6.2-.5: Connecting the Sensor Cable

Figure 6.2-6: Placing the Sensor in the Mount

- 2. Place the white plastic mounting support over the Wet Labs sensor.
- 3. Using a hex driver, secure the two plastic screws.
- 4. Replace the MMP skin.

Figure 6.2-7: Placing the Mounting Support

Figure 6.2-8: Securing the Mounting Support

Section 6.3 Wet Labs C-Star Sensor

MMP firmware release version 5.24 and higher supports the Wet Labs C-Star sensor, a transmissometer available in multiple wavelengths that records light beam transmittance. The Wet Labs documentation provided with the C-Star includes a calibration sheet. Refer to this sheet for information specific to your C-Star.

Figure 6.3-1: MMP with C-Star Installed

During system initialization, the firmware makes three attempts to confirm that the C-Star is connected. If the third attempt to confirm connection fails, the deployment continues without logging C-Star files.

C-Star Configuration and Samples Per Average

The Profiler System Configuration menu specifies the active sensors. The C-Star samples per average can also be changed on this screen. Valid entries are between 30 - 150 (the default is 36). The data collection speed (in Hz) changes based on samples per average. If the C-Star is already enabled, Samples per Average can be changed by typing *\$* and typing *N* at the prompt to disable the C-Star. The next prompt allows entry of samples per average.

Config: MPP_CT_FL_OP	CF2 V5.24	of Oct 2	1 2015	
Pattern P	_			
System Coni	Iguración			
Thu Oct 22 09:	33:36 2015	_		
System Parameters: <0> Battery capacity	240 Ah			
Sensor Suite: Port J9:CTD <1> Seabird 52MP CTD	ENABLED			
Port J5:ACM <2> No ACM selected				
Port J6:IMM <i> Telemetry</i>				
Port J4:SSP BioSuite Triplet/PAR <j> Wetlabs ECO FLBBCD <n> Satlantic SUNA Nitrate <o> Aanderaa Optode <u> bbe FluoroProbe <w> Wetlabs ECO BBFL2 <y> Wetlabs ECO FLBB2K <@> Wetlabs FLNTURTD</y></w></u></o></n></j>	ENABLED			
Port J10:SPR <l> Wetlabs ECO FLBB(RT)/D <p> Biospherical PAR <\$> WetLabs CST Transmissometer</p></l>	ENABLED @ 3	6 avg, ~0	.99 Hz <	
Port J7:TRB <t> Seapoint IR Turbidity</t>				
Port J8:FLR <e> Seapoint CHL Fluorometer <f> Wetlabs CDOM Fluorometer</f></e>				
Port J4i:SER <h> ProOceanus CH4 <m> OceanServer5000 MotionPack</m></h>				
Port J5i:SER <k> ProOceanus CO2 <#> Aanderaa Optode</k>	ENABLED			
Exit:				
<x> Save changes <^C> Cancel</x>	changes			
Selection [] ? x				
Figure 6.3-2: (Configure C-Star -	Sample Av	eraging	

C-Star Data Details

C-Star data is logged in a 'T' file for each profile. During sensor warm-up and motor ramp, data is collected and averaged at the sampling rate defined on the Configuration menu. The sensor powers off during sensor warm down.

Profile 3			
s/n ref sig raw	beam	therm	
1739 11161 13095 14109	0.353	532	
1739 11148 13081 14108	0.353	532	
1739 11140 13071 14108	0.353	532	
1739 11133 13065 14108	0.353	532	
1739 11129 13059 14107	0.353	531	
1739 11125 13055 14107	0.353	531	
1739 11122 13051 14107	0.353	531	
1739 11120 13048 14105	0.354	531	
1739 11117 13046 14107	0.353	531	
1739 11115 13044 14108	0.353	531	
1739 11114 13041 14105	0.354	531	
1739 11112 13039 14106	0.353	531	
1739 11111 13038 14105	0.354	531	
1739 11110 13037 14106	0.353	531	
· · · · · · · · · · · · · · · · · · ·	0.352	529	Display shortened to save space
1739 11079 13010 14112	0.352	529	
1739 11079 13010 14112	0.352	529	
1739 11079 13010 14112	0.352	529	
1739 11079 13010 14112	0.352	529	
1739 11079 13010 14112	0.352	529	
1739 11079 13010 14112	0.352	529	
Profile 3			
C-STAR turned on at 10/16 C-STAR turned off at 10/1	/2015 12 6/2015 1	:41:29 2:53:5	5
744 samples at ~1.00 Hz			

Figure 6.3-3: 'T' File C-Star Data

Using C-Star Bench Test Options

The main Bench Tests and Wet Labs Bench Tests menus provide options to verify and change sensor settings prior to deployment. The main Bench Tests Menu displays only options that are available to installed sensors. Type *\$* to display the Wet Labs C-Star Bench Tests menu.

CF2 V5.24 of Oct 16 2015 Config: MPP CT FL OP Pattern Profiler Bench Tests Tue Oct 20 10:42:20 2015 CTD utilities: <1> Seabird 52MP CTD communication <2> Seabird 52MP CTD pressure <3> Seabird 52MP CTD average pressure <4> Seabird 52MP CTD temperature record System evaluation: <7> Motor operation <8> Release Brake <9> Independent Watchdog <D> Detailed schedule <S> Recover schedule Sensor & Option tests: <J> Wetlabs ECO FLBBCD <#> Aanderaa Optode <\$> WetLabs CST Transmissometer Exit: <X> Main Menu Selection [] ? \$

Figure 6.3-4: Profiler Bench Tests Menu

```
Config: MPP_CT_FL_OP CF2 V5.24 of Oct 16 2015

Pattern Profiler

WetLabs CST Transmissometer Bench Test Menu

Tue Oct 20 10:42:25 2015

<1> Direct communications (19200 Baud)

<2> Perform a profile test loop

<3> Set number of samples averaged (36 avg, ~0.99 Hz)

<4> Offload C-Star data files

<M> return to previous Menu

Selection [] ?
```

Figure 6.3-5: Wet Labs C-Star Bench Tests Menu

Direct Sensor Connection

Typing *1* from the WetLabs CST Transmissometer Bench Test Menu connects directly with the C-Star sensor. The Profiler communicates with the Wet Labs Sensors at 19200 baud. Once direct connection is established, typing commands at the command prompt provides additional sensor information. Figure 6.3-6 shows direct communication with the C-Star.

```
Selection [] ? 1
10/20/15 10:41:53 WL/FLBCD Enter "!!!!!" (w/o quotes) to get sensor's
attention.
10/20/15 10:41:53 WL/FLBCD Press ^C to terminate COMM session.
10/20/15 10:41:53 SYSTEM Press ^B to change or confirm Baud rate.
10/20/15 10:41:54 WL/FLBCD 19.2 kBaud communication channel opened.
10/20/15 10:41:54 WL/FLBCD
                      Powered on.
Ser FLBBCD2K-4069
Ver TripletD 4.07
Ave 19
Pkt 0
!!!!!!!! [^C]
10/20/15 10:41:59 WL/FLBCD Powered off.
10/20/15 10:41:59 WL/FLBCD 19.2 kBaud communication channel closed.
10/09/15 12:40:20 WL/Cstar Powered off.
10/09/15 12:40:20 WL/Cstar 19.2 kBaud communication channel closed.
```

Figure 6.3-6: <1> C-Star Direct Communications

Perform Profile Test Loop

Option 2 performs a profile test loop as shown in Figure 6.3-7. The test simulates an automated sensor verification and a 5 minute profile.

```
Selection [] ? 2
Enter profile duration in minutes (1-60) [5] ? 1
Enter stop-check interval in seconds (2-60) [15] ? 2
10/20/15 10:42:36 WL/Cstar
                             Automated verification of sensor settings.
10/20/15 10:42:36 WL/Cstar
                              19.2 kBaud communication channel opened.
10/20/15 10:42:37 WL/Cstar
                              Powered on. ..
                              Sending command [!!!!]. ... .
10/20/15 10:42:38 WL/Cstar
10/20/15 10:42:39 WL/Cstar
                              Powered off.
10/20/15 10:42:39 WL/Cstar
                              Power-down delay .....
10/20/15 10:42:44 WL/Cstar
                              19.2 kBaud communication channel closed.
Press ^C to exit the loop.
10/20/15 10:42:44 WL/Cstar
                              Preparing for profile 0.
10/20/15 10:42:45 WL/Cstar
                              Initializing logging ...
10/20/15 10:42:45 WL/Cstar
                              19.2 kBaud communication channel opened.
10/20/15 10:42:45 WL/Cstar
                              Powered on. ..
10/20/15 10:42:47 WL/Cstar
                              Opening 00000\T000000.DAT for profile 0.
10/20/15 10:42:48 WL/Cstar
                              Writing 2 byte header for profile 0.
10/20/15 10:42:48 WL/Cstar
                              Logging initialized.
10/20/15 10:42:48 WL/Cstar
                              Acquiring for 1 minute, with a 2 second StopCheck interval.
10/20/15 10:42:51 WL/Cstar
                              1739 s/n, 11127 ref, 13188 sig, 14249 raw, 0.313 beam, 537 therm.
10/20/15 10:42:53 WL/Cstar
                              1739 s/n, 11117 ref, 13176 sig, 14248 raw, 0.313 beam, 537 therm.
[^C]
10/20/15 10:42:53 WL/Cstar
                              Halting profile 0.
                              Halting logging ...
10/20/15 10:42:53 WL/Cstar
10/20/15 10:42:53 WL/Cstar
                              Logging halted.
10/20/15 10:42:54 WL/Cstar
                              Dumping data to disk for profile 0.
10/20/15 10:42:54 WL/Cstar
                              Writing 22 byte trailer for profile 0.
10/20/15 10:42:54 WL/Cstar
                              Closing 00000\T000000.DAT for profile 0.
10/20/15 10:42:54 WL/Cstar
                              Powered off.
10/20/15 10:42:54 WL/Cstar
                              19.2 kBaud communication channel closed.
10/20/15 10:42:54 WL/Cstar
                              Test profile 0 succeeded. 6 samples
```

Figure 6.3-7: <2> C-Star Profile Test Loop

Set Samples Averaged

Option <3> changes the number of samples to average. Use this option to see how different sampling rates affect the processing speed (in Hz) of C-Star data collection. Type 3 and the password *set* to change the number of samples to average.

Config: MPP_CT_FL_OP CF2 V5.24 of Oct 30 2015 Pattern Profiler WetLabs CST Transmissometer Bench Test Menu Fri Nov 6 17:20:35 2015 <1> Direct communications (19200 Baud) <2> Perform a profile test loop <3> Set number of samples averaged (36 avg, ~0.99 Hz) <4> Offload C-Star data files <M> return to previous Menu Selection [] ? 3 Password: *** 11/06/15 17:20:41 WL/Cstar 19.2 kBaud communication channel opened. 11/06/15 17:20:41 WL/Cstar Powered on. .. Enter Cstar samples to average (30-150) [36] ? 30 11/06/15 17:20:45 WL/Cstar Sending command [!!!!!]. 11/06/15 17:20:46 WL/Cstar Sending command [\$ave 30]. ... 11/06/15 17:20:46 WL/Cstar Sending command [\$sto]. . 11/06/15 17:20:47 WL/Cstar Powered off. 11/06/15 17:20:47 WL/Cstar Power-down delay 11/06/15 17:20:52 WL/Cstar 19.2 kBaud communication channel closed.

Figure 6.3-8: <3> Set Number of Samples Averaged

Offload C-Star Data Files

Option <4> from the WetLabs CST Transmissometer Bench Test Menu offloads the C-Star data files.

```
Selection [] ? 4
11/06/15 17:20:55 SYSTEM Reading PROFILES.DAT ... done.
 Enter the first profile to offload (0-141) [0] ? 140
  Enter the last profile to offload (140-141) [141] ? 140
Profile 140
C-Star serial #1739
Averaged samples 30
  ref sig
            raw beam therm
112880999.99954211275099.999542
542
                         542
                          541
                         541
                         541
                          541
                          541
                          541
11238
        0
              0 99.999
                          541
. . .
...111760099.999111750099.999111750099.999111750099.999111750099.999111750099.999111750099.999111750099.999111750099.999111750099.999
                          535
                          535
                          535
                          535
                        535
                        535
                        535
                        535
Profile 140
C-Star turned on at 11/06/2015 17:05:44
C-Star turned off at 11/06/2015 17:18:31
920 samples at ~1.20 Hz
Press any key to continue.
```

Figure 6.3-9: <4> Offload C-Star Data Files

Installing the C-Star in the Mounting Space

The MMP skin has mounting inserts for the top and bottom clamps that hold the C-Star. To attach the C-Star and mounting clamps, complete the following steps.

- 1. Place the MMP skin with the C-Star cable facing up.
- 2. Place the plastic bottom clamp in the MMP skin insert.

Figure 6.3-10: Installing Bottom Clamp

- 3. Using a 5/16" hex driver (provided in the toolkit), tighten the two nylon screws on each side of the bottom clamp.
- 4. Gently insert the C-Star in the plastic mounting clamp.

Figure 6.3-11: Tightening Nylon Screws

Figure 6.3-12: Inserting the C-Star

5. Insert nylon screws on both sides of the top clamp and tighten the clamp to the MMP body with a 5/16" hex driver (included in the toolkit).

Figure 6.3-13: Securing Top Clamp

Figure 6.3-14: Tighten Top Clamp Nylon Screws

- 6. Tighten the top clamp around the C-Star using a 3/16" hex driver.
- 7. Connect the C-Star sensor cable to the C-Star bulkhead connector. The cable will ship inside the MMP.

Figure 6.3-15: Tighten Top Clamp and Connect Bulkhead

Removing the C-Star from the MMP

To remove the C-Star from the MMP, complete the following steps:

- 1. Remove the two 3/8-16" nylon screws from the top clamp to release it from the MMP body.
- 2. Gently pull the C-STAR (with the top clamp still attached) away from the body, and up from the bottom clamp.
- 3. If necessary for storage and transportation, remove the two 3/8-16" nylon screws from the bottom clamp as well. The top clamp is tightened with a single 1/4-20 screw.

Notes

Section 6.4 Wet Labs SeaOwl Sensor

MMP firmware release version 5.28 and higher supports the Wet Labs SeaOwl sensor, a transmissometer that measures oil-in water. The WetLabs documentation provided with the SeaOwl includes a calibration sheet. Refer to this sheet for information specific to your SeaOwl.

Although the SeaOwl is not a self logging sensor, it can be enabled and disabled using the REQACT control command as well as queued with sensor data transmission using the REQQUE control command. See Appendix A 'Inductive File Transmission Protocol' in this User Manual for details on these commands.

SeaOwl

Figure 6.4-1: MMP with SeaOwl Installed

During system initialization the firmware makes three attempts to confirm that the SeaOwl is connected. If the third attempt to confirm connection fails, the deployment continues without logging SeaOwl files.

SeaOwl Data Details

SeaOwl data is logged in a "W' file for each profile.

```
Profile 4, SEAOWLA2K-021
mm/dd/yyyy hh:mm:ss ChLed ChLoG ChHiG ChRep bbLed bbLoG bbHiG bbRep FDLe1 FDLe2 FDLoG FDHiG FDRep
04/19/2017 15:03:19
                     3779
                            690
                                 6530
                                       6530
                                             2705
                                                    209
                                                         -263
                                                               -263
                                                                     3762
                                                                           3762
                                                                                        2696
                                                                                   317
                                                                                              2696
                                                                                   316
04/19/2017 15:03:22
                     3760
                            689
                                 6518
                                       6518
                                             2695
                                                    137
                                                         -146
                                                               -146
                                                                     3759
                                                                           3759
                                                                                       2691
                                                                                             2691
04/19/2017 15:03:26
                    3757
                            688
                                 6510
                                       6510
                                             2693
                                                    164
                                                         -145
                                                               -145
                                                                     3756
                                                                           3756
                                                                                   316
                                                                                       2688
                                                                                             2688
04/19/2017 15:03:30
                     3753
                                 6500
                                       6500
                                                         -143
                                                               -143
                                                                     3756
                                                                           3756
                                                                                   316
                            686
                                             2689
                                                    189
                                                                                       2686
                                                                                             2686
04/19/2017 15:03:33
                     3745
                            685
                                 6489
                                       6489
                                             2684
                                                    211
                                                         -139
                                                               -139
                                                                     3754
                                                                           3754
                                                                                   316
                                                                                       2683
                                                                                              2683
04/19/2017 15:03:37
                     3741
                            684
                                 6477
                                       6477
                                             2683
                                                    229
                                                         -136
                                                               -136
                                                                     3754
                                                                           3754
                                                                                   316
                                                                                       2685
                                                                                             2685
                                                                     3752
                                                    246 -133
04/19/2017 15:03:40
                     3742
                            683 6466
                                       6466
                                             2682
                                                               -133
                                                                           3752
                                                                                   315
                                                                                       2681
                                                                                             2681
                                             2681
                                                    262 -127
                                                               -127
                                                                     3751
                                                                           3751
                                                                                   315
04/19/2017 15:03:44
                     3740
                            682
                                 6460
                                       6460
                                                                                       2677
                                                                                             2677
                                                               -125
04/19/2017 15:03:48
                     3737
                            680 6447
                                       6447
                                             2679
                                                    275 -125
                                                                     3748
                                                                           3748
                                                                                   314 2674
                                                                                             2674
04/19/2017 15:03:54 3738
                            680
                                6447
                                      6447 2681
                                                    240 -107 -107 3748 3748
                                                                                   314 2675
                                                                                             2675
Profile 4
  SEAOWL turned on at 04/19/2017 15:01:16
  SEAOWL turned off at 04/19/2017 15:05:59
```

Figure 6.4-2: 'W' File Sea-Owl Data

Although SeaOwl manufacturer documentation notes that output columns can be changed, the output columns required for MMP integration are predefined as recommended by WetLabs. These columns will be reset at Profiler initialization.

Using SeaOwl Bench Test Options

The main Bench Tests and Wet Labs SeaOwl Bench Tests menus provide options to verify and change sensor settings before deployment. The main Bench Tests Menu displays only options that are available to installed sensors. Type G to display the Wet Labs SeaOwl Bench Tests menu.

Config: MPP IM CM CT OP SC CF2 V5.28 Pattern Profiler Bench Tests Wed May 31 09:27:16 2017 CTD & ACM utilities: <1> Seabird 52MP CTD communication <2> Seabird 52MP CTD pressure <3> Seabird 52MP CTD average pressure <4> Seabird 52MP CTD temperature record <5> Falmouth Scientific 3d ACM+ communication <6> Falmouth Scientific 3d ACM+ tilt & compass System evaluation: <7> Motor operation <8> Set Brake <9> Independent Watchdog <D> Detailed schedule <S> Recover schedule Sensor & Option tests: <G> Wetlabs SeaOwl <I> Seabird Inductive Modem <#> Aanderaa Optode Exit: <X> Main Menu Selection [] ? g

Figure 6.4-3: Profiler Bench Tests Menu

```
Config: MPP_IM_CM_CT_OP_SC CF2 V5.28

Pattern Profiler

Wetlabs SeaOwl Bench Test Menu

Wed May 31 09:27:24 2017

<1> Direct communications (19200 Baud)

<2> restore McLane parameters

<4> Report parameter settings

<5> Perform a profile test loop

<M> return to previous Menu

Selection [] ?
```


Direct Sensor Connection

Typing *1* from the WetLabs SeaOwl Bench Test Menu connects directly with the SeaOwl sensor. The Profiler communicates with the Wet Labs Sensors at 19200 baud. Once direct connection is established, typing commands at the command prompt provides additional sensor information. Figure 6.4-5 shows direct communication with the SeaOwl.

```
Selection [] ? 1
05/31/2017 09:27:30 WlSeaOwl Enter "!!!!!" (w/o quotes) to get sensor's attention.
05/31/2017 09:27:30 WlSeaOwl Press ^C to terminate COMM session.
05/31/2017 09:27:30
                    SYSTEM Press ^B to change or confirm Baud rate.
05/31/2017 09:27:31 WlSeaOwl 19.2 kBaud communication channel opened.
05/31/2017 09:27:31 WlSeaOwl Powered on.
FDLe1 FDLe2
Name Mod-SerChLed ChLoG ChHiG ChRep bbLed bbLoG bbHiG bbRep
                                                                          FDLoG FDHiG FDRep
SEAOWLA2K-021 3778
                  631
                        5937
                               5937
                                     2674
                                           9918
                                                 9684
                                                        9684
                                                              3744
                                                                    3744
                                                                          227
                                                                                1793
                                                                                       1793
SEAOWLA2K-021 3777
                  630
                        5925
                               5925
                                     2660
                                           9927
                                                 9689
                                                       9689
                                                              4142
                                                                    4142
                                                                          227
                                                                                1793
                                                                                       1793
SEAOWLA2K-021 3751
                  631
                        5939
                              5939
                                     2662
                                           9932
                                                 9657
                                                       9657
                                                              4141
                                                                    4141
                                                                          227
                                                                                1793
                                                                                       1793
SEAOWLA2K-021 3762
                  630
                        5922
                               5922
                                     2653
                                           9931
                                                 9595
                                                        9595
                                                              4139
                                                                    4139
                                                                          227
                                                                                1796
                                                                                       1796
                               5921
                                     2656
SEAOWLA2K-021 3739
                  630
                        5921
                                           9927
                                                 9524
                                                       9524
                                                              4137
                                                                    4137
                                                                          226
                                                                                1793
                                                                                       1793
SEAOWLA2K-021 3753
                  629
                        5914
                               5914
                                     2648
                                           9923
                                                 9448
                                                       9448
                                                              4134
                                                                    4134
                                                                          226
                                                                                1791
                                                                                       1791
!SEAOWLA2K-021
                                     5912
                                                 9918
                                                              9374
                  3732
                        628
                               5912
                                           2652
                                                       9374
                                                                    4133
                                                                          4133
                                                                                226
                                                                                       1791
      1791
!!!!
Ser SEAOWLA2K-021
Ver AOS 5.45
Ave 12
Pkt 0
Seq 3
Rat 19200
! [^C]
05/31/2017 09:27:44 WlSeaOwl Powered off.
05/31/2017 09:27:44 WlSeaOwl 19.2 kBaud communication channel closed.
```

```
Figure 6.4-5: <1> SeaOwl Direct Communications
```


Restore McLane Parameters

Option 2 restores the SeaOwl settings required by McLane for integration to the Profiler. This option requires the password *mcl*.

```
Config: MPP_IM_CM_CT_OP_SC CF2 V5.28

Pattern Profiler

Wetlabs SeaOwl Bench Test Menu

Wed May 31 09:27:24 2017

<1> Direct communications (19200 Baud)

<2> restore McLane parameters

<4> Report parameter settings

<5> Perform a profile test loop

<M> return to previous Menu

Selection [] ?

CF2 V5.28

CF
```

Figure 6.4-6: <2> Restore McLane Parameters

Report Parameter Settings

Option 3 reports the SeaOwl settings.

```
Selection [] ? 3
05/31/2017 09:28:06 WlSeaOwl 19.2 kBaud communication channel opened.
05/31/2017 09:28:06 WlSeaOwl Powered on. .
05/31/2017 09:28:09 WlSeaOwl Sending command [!!!!!]. ...
05/31/2017 09:28:09 WlSeaOwl
Ser SEAOWLA2K-021
Ver AOS 5.45
Ave 12
Pkt 0
Seq 3
Rat 19200.
05/31/2017 09:28:09 WlSeaOwl Powered off.
05/31/2017 09:28:09 WlSeaOwl 19.2 kBaud communication channel closed.
```

Figure 6.4-7: <3> Report Parameter Settings

Perform Profile Test Loop

Option 4 performs a profile test loop as shown in Figure 6.4-8. The test simulates an automated sensor verification and a 5 minute profile.

```
Selection [] ? 4
05/31/2017 09:28:18 WlSeaOwl 5854 Chl, 9360 bb, 1778 FDOM.
05/31/2017 09:28:18 SYSTEM Suspended until 05/31/2017 09:28:25 ... Awake
05/31/2017 09:28:28 WlSeaOwl 5849 Chl, 9630 bb, 1779 FDOM.
05/31/2017 09:28:28 SYSTEM Suspended until 05/31/2017 09:28:35 ... Awake
05/31/2017 09:28:39 WlSeaOwl 5864 Chl, 9656 bb, 1778 FDOM.
05/31/2017 09:28:49 WlSeaOwl 5856 Chl, 9644 bb, 1778 FDOM.
05/31/2017 09:28:49 SYSTEM Suspended until 05/31/2017 09:28:55 ... Awake
05/31/2017 09:28:59 WlSeaOwl 5854 Chl, 9639 bb, 1777 FDOM.
05/31/2017 09:28:59 WlSeaOwl 5854 Chl, 9631 bb, 1776 FDOM.
05/31/2017 09:28:59 SYSTEM Suspended until 05/31/2017 09:29:05 ... Awake
05/31/2017 09:28:59 SYSTEM Suspended until 05/31/2017 09:29:05 ... Awake
05/31/2017 09:29:09 WlSeaOwl 5848 Chl, 9631 bb, 1776 FDOM.
05/31/2017 09:29:09 SYSTEM Suspended until 05/31/2017 09:29:15 ... Awake
05/31/2017 09:29:09 SYSTEM Suspended until 05/31/2017 09:29:15 ... Awake
05/31/2017 09:29:09 SYSTEM Suspended until 05/31/2017 09:29:15 ... Awake
05/31/2017 09:29:09 SYSTEM Suspended until 05/31/2017 09:29:15 ... Awake
05/31/2017 09:29:09 SYSTEM Suspended until 05/31/2017 09:29:15 ... Awake
05/31/2017 09:29:09 SYSTEM Suspended until 05/31/2017 09:29:15 ... Awake
05/31/2017 09:29:09 SYSTEM Suspended until 05/31/2017 09:29:15 ... Awake
```

Figure 6.4-8: <4> SeaOwl Profile Test Loop

Removing the SeaOwl for Calibration

The SeaOwl sensor can be removed for calibration if necessary, using the following steps:

- 1. Place the MMP on a stable cart or surface and remove the side of the MMP skin closest to the sensor.
- 2. With the SeaOwl still connected to the sensor cable, use a 5/32" hex driver (provided in the toolkit), to loosen the two mounting screws behind the SeaOwl.
- 3. Gently pull the SeaOwl through the mounting space.
- 4. Unplug the SeaOwl sensor cable

Figure 6.4-9: Locate Mounting Screws

Figure 6.4-10: Loosen Mounting Screws

Figure 6.4-11: Remove the Sensor Cable

Notes

Chapter 7 Ostar OceanServer MotionPack Sensor

MMP Release v5.00 firmware and higher supports the Ostar OceanServer5000. The OceanServer 5000 sensor board is installed on the controller electronics stack. The OceanServer samples heading, pitch and roll position with acceleration in the X, Y, and Z axes. Pressure recorded by the installed CTD is also reported. For additional information about the OceanServer5000 MotionPack sensor, refer to the Ocean Server Technology web site (www.ocean-server.com) or contact OceanServer.

Figure 7-1: Motion Sensor on MMP Electronics Stack

Collecting Data with the OceanServer MotionPack

MotionPack Data is logged in an 'M' file for each profile. During warm-up and ramp, 2 samples/second are collected. During the rest of the profile, including warm-down, 1 sample/sec is collected. The Profile Unpacker unpacks the 'M' file with the CTD, ENG, ACM and other data files.

The MotionPack collects 3 axis Magnetic Field and 3 axis Acceleration readings (X, Y, Z) and the Magnetic Vector and Accelerated Vector Lengths. The Pressure column records the depth for each measurement as reported by the CTD. Azimuth heading, pitch and roll readings are in degrees. The Temperature is the internal board temperature in degrees Celsius.

Profile 2												
Time,	Pres, A	zim, Pitch,	Roll,	Temp,Vr	mag, X	Kmag,	Ymag,	Zmag,	Vacc,	Xacc,	Yacc,	Zaac
12/07/2012 16:30:19	,0.80, 3	10.2,1.1,	-0.3,	7.6, 30	03.00,-	-135.54	,138.0	6,233.3	18,1.003	8,0.019	,-0.006	,1.003
12/07/2012 16:30:20	,0.80, 3	06.9,1.2,	-0.6,	7.7, 30	02.88,-	-135.38	,138.0	5 , 233.2	14,1.004	1,0.021	,-0.010	,1.004
12/07/2012 16:30:20	,0.80, 3	06.9,1.2,	-0.6,	7.7, 30	03.07,-	-135.69	,138.0	7,233.3	19,1.006	5,0.020	,-0.011	,1.006
12/07/2012 16:30:21	,0.80, 3	10.0,1.2,	-0.4,	7.8, 30	02.96,-	-135.70	,138.0	1,233.0	07,1.006	5,0.020	,-0.007	,1.006

Figure 7-2: 'M' File Motion Pack Data

Configuring the Firmware to Use the OceanServer MotionPack

The Profiler System Configuration menu specifies the active sensors. To enable an OS5000 MotionPack, complete the following steps:

- 1. From the Main Menu type c and enter the password *configure*. Select <M> OceanServer5000 MotionPack and then type Y to enable the sensor.
- 2. Select <M> OceanServer5000 MotionPack and then type *Y* to enable the sensor.

Config: MPP_IM_C	T_CM_PA_SC_MP	CF2 V5.12	of Feb	11 2014
_	Pattern Pro System Config	filer uration		
-		- 4.4 - 2.0.1.4	_	
System Paramete <0> Battery ca	rs: pacity	240 Ah		
Sensor Suite: Port J9:CT <1> Seabird 52	D MP CTD	- ENABLED		
Port J5:AC <2> Nortek Aqu	M aDopp DVS	- ENABLED Aqu	aDopp-2	
Port J6:IM <i> Telemetry</i>	М	- ENABLED IMM	@ 1200	baud
Port J4:SS BioSuite T <n> Satlantic <o> Aanderaa O <u> bbe Fluoro <w> Wetlabs EC</w></u></o></n>	P riplet/PAR SUNA Nitrate ptode Probe O BBFL2	- ENABLED		
Port J10:SPR <l> Wetlabs EC <p> Biospheric</p></l>	0 FLBB(RT)/D al PAR	- ENABLED @ 5	samp/a	vg
Port J7:TR <t> Seapoint I</t>	B R Turbidity			
Port J8:FL <e> Seapoint C <f> Wetlabs CD</f></e>	R HL Fluorometer OM Fluorometer			
Port J4i:S <h> ProOceanus <m> OceanServe</m></h>	ER CH4 r5000 MotionPack	- ENABLED	 	OS5000 MotionPack
Port J5i:S <k> ProOceanus</k>	ER CO2			
Exit: <x> Save chang</x>	es <^C> Cancel ch	anges		
Selection [] ?	[^C]			
Enable the "Nort Select 1 = AquaD	ek AquaDopp DVS" [Y] opp-HR, 2 = AquaDopp	? -II (1-2) [0]	? 2	

Figure 7-3: System Configuration Menu with Sensor Selections

Using Bench Test Options

The main Bench Tests and OceanServer Bench Tests menus provide options to verify and change sensor settings prior to deployment. The main Bench Tests Menu displays only options that are available to installed sensors.

1. From the main Profiler Menu, type '5' at the prompt to display the Profiler Bench Tests Menu.

Figure 7-4: Profiler Main Menu

		0	1.0	0.01.0
Confid: MPP_IM_CT_CM_FL_TU_OP_MP CF2 V5.09	ΟI	UCT	19	2013
Pattern Profiler				
Bench Tests				
	-			
Wed Dec 19 13:44:33 2012 Sonsor Utilitios:				
<pre><1> Seabird 52MP CTD communication <2> Seabird 52MP CTD pressure <3> Seabird 52MP CTD average pressure <4> Seabird 52MP CTD temperature record</pre>				
System Evaluation: <7> Motor operation <8> Set Brake <9> Independent Watchdog <0> Battery endurance <d> Detailed schedule <s> Recover schedule</s></d>				
System Sensor & Option Tests: <m> OceanServer5000 MotionPack</m>				
Exit:				

Figure 7-5: Profiler Bench Tests Menu

- 2. From the Profiler Bench Tests menu, type *M* at the prompt to display the OceanServer Bench Test menu.
- 3. Type '1' to connect directly with the OceanServer MotionPack.

Configuration: MPP_CT	CF2 V5.00	of Dec	19 2012
Patter	n Profiler	-	
OceanServer5000 Mot	ionPack Bench Test	Menu	
Wed Dec 19	13:44:36 2012	-	
<1> Direct communications (19200 Baud)		
<2> Restore McLane paramete	rs		Direct Communications
<3> Rescore factory parameter <4> Report parameter settin			
<5> Perform a profile test	loop		
<m> return to previous Menu</m>			
Selection [] ? 1			
12/19/12 13:44:53 OST/5kMP Pres 12/19/12 13:44:53 OST/5kMP SYST	s ^C to terminate (EM Press ^B to char	COMM ses nge or co	sion. onfirm Baud rate.

Figure 7-6: OceanServer MotionPack Bench Tests Menu

The Profiler communicates with the OceanServer at 19200 baud. If this rate is changed (for example after sensor manufacturer servicing) communicating directly with the sensor displays unrelated characters or a communication error (Figure 7-7). Fix the error by changing the sensor to the baud rate the Profiler requires.

Figure 7-7: Baud Rate Communications Error Examples

Typing [CTRL]-[B] from the sensor-specific Bench Tests menu displays the Baud Rate menu (Figure 7-7). Use this menu option to temporarily connect at the sensor's current baud rate. Once connected to the sensor, change to the Profiler-required baud rate. Finally, exit the Baud Rate Menu to resume the communications session.

```
Config: MPP_IM_CT_CM_FL_TU_OP_MP CF2 V5.00 of Jan 10 2013

Pattern Profiler

Select new Baud rate

Fri Jan 11 13:48:30 2013

<1> 1200

<2> 2400

<3> 4800

<4> 9600

<5> 19200

<6> 38400

<7> 57600

<G> Go to COMM session

Selection [] ? g
```

Figure 7-8: Baud Rate Menu

Direct Sensor Connection

Once connected directly to the OceanServer, typing commands at the command prompt provides additional sensor information. Figure 7-9 shows direct connection with the OceanServer.

Figure 7-9: Option <1> OceanServer Direct Communications

Restore McLane and Factory Settings

Option <2> and <3> from the MotionPack Bench Tests menu restore the McLane or OceanServer factory settings on the MotionPack sensor. Using option <2> requires the password *mclane*. Using option <3> (not shown) also requires a password. Contact McLane before resetting to the factory parameters.

```
Selection [] ? 2 Password: ***
12/19/12 13:52:46 OST/5kMP 19.2 kBaud communication channel opened.
12/19/12 13:52:46 OST/5kMP Powered on. .
12/19/12 13:52:49 OST/5kMP Sending command [V]. . . .
12/19/12 13:52:49 OST/5kMP Identified as V2.6, S#25828. ..
12/19/12 13:52:49 OST/5kMP Sending command [R]. . ..
12/19/12 13:52:49 OST/5kMP Sending command [1]. . . .
12/19/12 13:52:49 OST/5kMP Sending command [*]. . ..
12/19/12 13:52:49 OST/5kMP Sending command [8]. .
12/19/12 13:52:50 OST/5kMP Sending command [X]. . ..
12/19/12 13:52:50 OST/5kMP Sending command [495]. . .
12/19/12 13:52:50 OST/5kMP Sending command [E]. . .....
12/19/12 13:52:50 OST/5kMP Sending command [3]. .
12/19/12 13:52:50 OST/5kMP Was able to restore McLane parameters.
12/19/12 13:52:50 OST/5kMP Powered off.
12/19/12 13:52:50 OST/5kMP Power-down delay .....
12/19/12 13:52:52 OST/5kMP 19.2 kBaud communication channel closed.
```

Figure 7-10:Option <2> Restore McLane Parameters

The firmware requires settings configured by McLane. Changing settings, or resetting to the factory settings prevents the MotionPack sensor from working correctly with the profiler.

Display Current Settings

Option <4> displays the current MotionPack parameters.

Selection [] ? 4 12/19/12 13:53:41 OST/5kMP Identified as V2.6, S#25828. 12/19/12 13:53:41 OST/5kMP Parameter settings. _____ FW_Version=V2.6-4 FW Date=3-Nov-10 Serial number=000025828 Test_date=08 Aug 11 Output_Format=8 Acclerometer=2 Display_Fields=495 HW_Mounting_Pos=3 Baud Rate=3 Set-Reset Rate=200 Output_Rate=1 Averaging=4 AD_Update_Rate=3 lifeskip=8 Euler=4 MaxG=2 _____ Press any key to continue.

Figure 7-11: Option <4> Report Parameter Settings

Perform Profile Test Loop

Option <5> performs a profile test loop. This test simulates an automated sensor verification which begins with a display of the parameters and 5 minute profile.

Config: MPP IM CT CM PA SC MP CF2 V5.17 of Sep 16 2014 Pattern Profiler OceanServer5000 MotionPack Bench Test Menu Thu Sep 18 10:39:34 2014 <1> Direct communications (19200 Baud) <2> restore McLane parameters <3> restore Factory parameters <4> Report parameter settings <5> Perform a profile test loop <M> return to previous Menu Selection [] ? 5 09/18/14 10:39:37 OST/5kMP Automated verification of sensor settings. 09/18/14 10:39:41 OST/5kMP Identified as V2.6, S#24112. 09/18/14 10:39:41 OST/5kMP Parameter settings. _____ FW Version=V2.6-4 FW Date=3-Nov-10 Serial number=000024112 Test date=06 Feb 13 Output_Format=8 Acclerometer=2 Display_Fields=495 HW Mounting Pos=5 Baud Rate=3 Set-Reset_Rate=100 Output Rate=2 Averaging=4 AD Update Rate=3 lifeskip=8 Euler=4 MaxG=2 _____ 09/18/14 10:39:43 SYSTEM Next profile scheduled for 09/18/14 10:40:00. 09/18/14 10:39:43 SYSTEM Suspended until 09/18/14 10:40:00 ... Awake

Figure 7-12:Option <5> Perform Profile Test Loop screen 1 of 2

10/09/12 13:12:02 SYSTEM Awake at 10/09/12 13:12:02. Press ^C to exit the loop 10/09/12 13:12:02 SYSTEM Prepping for profile 0. 10/09/12 13:12:02 SYSTEM Initializing OST/5kMP logging pointers. 10/09/12 13:12:06 OST/5kMP Identified as V2.6, S#25828. 10/09/12 13:12:06 OST/5kMP Opening M0000000.DAT for profile 0. 10/09/12 13:12:06 OST/5kMP Writing 2 byte header for profile 0. 10/09/12 13:12:06 OST/5kMP Closing M0000000.DAT for profile 0. 10/09/12 13:12:06 OST/5kMP Acquiring to 30 dbar, with a 15 second stop-check interval. 10/09/12 13:12:06 SYSTEM 1 minute warmup. Waiting until 10/09/12 13:13:06. ... Continuing 10/09/12 13:12:07 SYSTEM 10/09/12 13:13:10 SYSTEM "Diving" ... C27.3, P6.5, R-0.1, T19.6, Vm179.9, Val.0, 3.75 dbar. 10/09/12 13:13:29 OST/5kMP 10/09/12 13:13:44 OST/5kMP C27.3, P6.5, R-0.1, T19.9, Vm179.8, Val.0, 7.50 dbar. C27.4, P6.5, R-0.1, T20.1, Vm179.6, Val.0, 11.25 dbar. 10/09/12 13:13:59 OST/5kMP C27.5, P6.4, R-0.1, T20.3, Vm179.6, Val.0, 15.00 dbar. 10/09/12 13:14:14 OST/5kMP 10/09/12 13:14:29 OST/5kMP C27.4, P6.4, R-0.1, T20.5, Vm179.2, Va1.0, 18.75 dbar. 10/09/12 13:14:44 OST/5kMP C27.4, P6.4, R-0.1, T20.6, Vm179.2, Val.0, 22.50 dbar. C27.4, P6.4, R-0.1, T20.7, Vm179.2, Val.0, 26.25 dbar. 10/09/12 13:14:59 OST/5kMP 10/09/12 13:15:14 OST/5kMP C27.4, P6.4, R-0.1, T20.8, Vm179.1, Va1.0, 30.00 dbar. 10/09/12 13:15:14 SYSTEM Found stop at 30 dbar. 10/09/12 13:15:14 SYSTEM 1 minute warmdown. Waiting until 10/09/12 13:16:14. ... Continuing 10/09/12 13:15:14 SYSTEM Opening M0000000.DAT for profile 0. 10/09/12 13:16:17 OST/5kMP 10/09/12 13:16:17 OST/5kMP Writing 64 byte trailer for profile 0. 10/09/12 13:16:17 OST/5kMP Closing M0000000.DAT for profile 0. 10/09/12 13:16:18 OST/5kMP test profile 0 succeeded

Figure 7-13:Option <5> Perform Profile Test Loop screen 2 of 2

Notes

Chapter 8 Satlantic SUNA Sensor

MMP Release v4.15 and higher supports the Satlantic SUNA sensor. The SUNA collects nitrate data which is recorded in an 'S' file (*SNNNNNN*.DAT for each profile). For additional information, refer to the Satlantic web site (www.satlantic.com/suna) or contact Satlantic.

Figure 8-1: MMP with SUNA Sensor

Collecting Data with the SUNA

SUNA data is logged in the 'S' file. ('*SNNNNNN.DAT*' where 'N' is the profile number). Five nitrate measurements are collected during each stop check. One 'dark' frame is recorded for reference. Four 'light' frames of nitrate data are then recorded. The stop check data displays only the last 'light' frame (the nitrate sample), measured as milligrams per liter.

Unpacked SUNA data is shown next in Figure 8-2.

1002 2002	8	88	915
1001 C Ch019 Ch019 Ch019 Ch019 Ch019 Ch087 Ch121 Ch121 Ch128 Ch138 Ch138 Ch138 Ch138 Ch138 Ch138 Ch138 Ch138 Ch138 Ch138 Ch138 Ch019 Ch019 Ch019 Ch019 Ch019 Ch019 Ch019 Ch019 Ch019 Ch019 Ch019 Ch019 Ch019 Ch019 Ch036 Ch019 Ch036 Ch136 Ch136 Ch136 Ch136 Ch136 Ch136 Ch136 Ch136 Ch136 Ch136 Ch137	8 851 883 8855 8855 8865 8865 8661 851 860 851 851	858 9913 26716 27004 37181 26718 29425 199425 199236 15693 15693 15693 10854	900 9921 26678
 kAv Ch Ch018 Ch035 Ch035 Ch035 Ch035 Ch035 Ch133 Ch134 Ch134 Ch137 Ch137 Ch137 Ch137 Ch137 Ch1205 Ch222 	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	843 25930 25930 25709 25709 25771 25771 19175 26132 175153 15153 15153 15153	843 7842 25927
CAV Dar Ch017 Ch017 Ch034 Ch068 Ch068 Ch102 Ch119 Ch136 Ch135 Ch137 Ch187 Ch204 Ch221 Ch221	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	308 24907 24907 24907 24631 24907 25699 31350 19188 135699 156899 15649 15256 11518	265 5455 24871
CMN Spe Ch016 Ch016 Ch033 Ch050 Ch084 Ch101 Ch118 Ch135 Ch135 Ch135 Ch135 Ch135 Ch135 Ch136 Ch186 Ch220 Ch220	.55 871 872 888 877 865 865 865 10 865 10 865 10 865 10 10 10 10 10 10 10 10 10 10 10 10 10	.99 21 3336 233716 233716 233716 233716 233991 155297 27598 17739 15626 15337 15626 15337	.99 21 3386 23625
LtRg Vl Ch015 Ch032 Ch032 Ch049 Ch066 Ch134 Ch117 Ch134 Ch134 Ch168 Ch168 Ch168 Ch185 Ch202 Ch219 Ch219	5.46 8880 8886 815 8846 8867 8867 8867 8861 8865 8865 8865 8865 8865 8865 8865	5.52 10 [5.52 10 22333 223280 422485 22226 225226 32465 12443 28307 18120 15614 15614 15614 15614 15612 12052	5.49 10 1998 22273
/lt12 v] Ch014 Ch014 Ch031 Ch065 Ch082 Ch167 Ch133 Ch133 Ch133 Ch133 Ch133 Ch133 Ch133 Ch133 Ch133 Ch1284 Ch2184 Ch2184	0.00 0.00	12.006 12.00883 220883 220883 220883 220883 22567 225667 225527 28972 155668 155668 155658 155658 1556555 15565555 15565555 15565555 1556555555 155655555555	12.12 1278 20868
<pre>Hum Chung Ch</pre>	2 8837 8837 8850 8853 8888 8888 8538 8538 8538 8538	3 6 6 0 1954 2 2568 2 25683 2 25683 3 22111 1 25998 1 15483 1 15483 1 15483 1 15483 1 2599 1 2599 1 2599	5.7 972 19519
LampTim Ch012 Ch012 Ch029 Ch063 Ch080 Ch131 Ch131 Ch148 Ch148 Ch148 Ch148 Ch199 Ch216 Ch216	43621: 856 856 852 852 852 852 852 852 852 852 852 852	43621. 18255 18255 22776 22776 22776 22736 22438 224012 30144 15464 15467 15467 15467 15467 15492 12890	43621 868 18189
SpecT] Ch011 Ch011 Ch028 Ch045 Ch045 Ch130 Ch130 Ch131 Ch147 Ch147 Ch181 Ch181 Ch181 Ch2158	25.0 25.0 8832 8832 8853 8853 8653 8653 8633 8633	25.1 896 17097 23021 41748 23021 23069 320669 320669 15466 155456 155456 13143	25.1 884 17037
<pre>^ LampT Ch010 Ch010 Ch027 Ch044 Ch048 Ch112 Ch112 Ch146 Ch146 Ch146 Ch163 Ch163 Ch163 Ch180 Ch180 Ch180 Ch181 Ch181</pre>	27.1 861 861 861 862 8842 8842 8843 8843 8843 8843 8843 857 857 857 857	4 26.3 897 16080 23463 40514 2056803 31537 21586 22554 22554 20167 15514 15514 15584 13423	2 26.3 891 16022
FitErro: Ch009 Ch006 Ch026 Ch043 Ch047 Ch111 Ch128 Ch145 Ch145 Ch145 Ch145 Ch145 Ch146 Ch179 Ch179 Ch1213 Ch213	0.00000 869 823 823 823 823 823 843 828 828 828 828 828 828 828 828 828 819).00000 1520 15219 24069 23037 23037 2250301 21900 21900 21900 15565 15565 15565 15565 13675	0.00000 876 15187
rateMG Ch008 Ch008 Ch025 Ch025 Ch025 Ch025 Ch025 Ch127 Ch127 Ch141 Ch141 Ch178 Ch178 Ch178 Ch178 Ch178 Ch178 Ch178	000000 858 858 858 853 853 866 866 817 8339 8339 8339 8339 8339)30156 14507 14507 24873 24873 23142 23142 23122 23122 23122 23122 23122 23123 15635 15635 15635 13885)25408 (886 14471
■UM Nit: Ch007 Ch024 Ch058 Ch058 Ch055 Ch126 Ch126 Ch126 Ch126 Ch143 Ch147 Ch194 Ch194 Ch211 Ch211	000 835 873 877 871 871 8879 8833 841 841 841 8415	976 0.4 867 25581 25581 25581 25581 25581 25581 25581 29372 29372 29372 29372 29173 21173 21173 21173 1173 115785 115785 115785 1151819 1155785 1155785 1155785 1155785 1155785 11558555 115585 115585 115585 115585 115585 115585 115585 115585 115585 115585 115585 115585 115585 115585 115585 1155855 115585 115585 115585 115585 1155855 1155855 115585 115585 115585 1155855 1155855 1155855 1155855 11558555 115585555 1155855555 1155855555555	990 0.1 875 13939
Nitrat Ch006 Ch006 Ch023 Ch023 Ch024 Ch024 Ch125 Ch125 Ch125 Ch125 Ch125 Ch125 Ch125 Ch128 C	0.00 8843 8843 8855 8853 8853 8663 8663 8663 8663 866	2.152. 893 13490 263683 30845 226339 226339 22999 15905 15905 15905 15905 15905 15905 0x2c	1.813 873 13443
mefield Ch005 Ch005 Ch022 Ch023 Ch023 Ch033 Ch033 Ch107 Ch124 Ch124 Ch125 Ch125 Ch125 Ch125 Ch125 Ch226 Ch226	148.723 825 825 8341 8330 8337 8341 8341 8347 8847 8847 8857 8854 8534 8524 00	152.035 873 873 13016 26909 31817 32283 26909 26115 19952 26115 26115 19952 2692 16096 15646 15646 16096	153.332 899 12986
e 6 ment Ti Ch004 Ch021 Ch023 Ch025 Ch025 Ch025 Ch025 Ch025 Ch123 Ch123 Ch124 Ch124 Ch121 Ch121 Ch225 Ch228	000 8552 8573 8573 8573 8573 8573 8570 8570 8570 8570 8570 8570 8570 8570	0052 12382 12382 27203 30041 33842 27261 19621 196521 1965522 1965522 1965552 1965552 1965522 1965552 1965552 1965552 1965552 1965552 1965552 1965552 1965552 1965552 1965552 1965552 1965552 19655552 1965552 196555555555555555555555555555555555555	0052 905 12373
Profil Instru Ch003 Ch020 Ch0237 Ch024 Ch071 Ch037 Ch037 Ch037 Ch125 Ch125 Ch125 Ch123 Ch137 Ch127 Ch127 Ch127 Ch127 Ch127 Ch127 Ch020 Ch0	SATSD SATSD 8555 8278 8266 88667 8826 8826 8826 8826 8832 8826 8832 8824 8824 8824 8824 8824 8824 8824	SATSLB 859 11413 27135 27135 28544 26747 266747 266747 266747 266747 266747 266747 266747 266747 19389 19389 16528 16528 16528 16528 16528 16528	SATSLB 913 11406

Figure 8-2: 'S' File SUNA Data

Configuring the Firmware to Use the SUNA

The Profiler System Configuration menu specifies the active sensors. The number of light sample frames captured per Stop Check can be changed from this menu. The sampling time varies based on how many frames are captured. To enable the SUNA, complete the following steps:

- 1. From the Main Menu type *c* and enter the password *configure*.
- 2. Select $\langle N \rangle$ for the Satlantic SUNA and then type *Y* to enable the sensor.
- 3. The setting for Frames per stop check displays next to the SUNA option.

Config: MPP_IM_CT_CM_PA_SC_MP_NI CF2 V5.12 of Feb 11 2014	
Pattern Profiler System Configuration	
Tue Mar 11 15:37:44 2014 System Parameters:	
<0> Battery capacity 240 Ah	
Sensor Suite: Port J9:CTD <1> Seabird 52MP CTD ENABLED	
Port J5:ACM <2> Nortek AquaDopp DVS ENABLED AquaDopp-2	
Port J6:IMM <i> Telemetry ENABLED IMM @ 1200 baud</i>	
Port J4:SSP BioSuite Triplet/PAR <n> Satlantic SUNA 1 Dk, 3 Lt Enabled <o> Aanderaa Optode <u> bbe FluoroProbe <w> Wetlabs ECO BBFL2 ENABLED</w></u></o></n>	
Port J10:SPR <l> Wetlabs ECO FLBB(RT)/D <p> Biospherical PAR ENABLED @ 5 samp/avg</p></l>	
Port J7:TRB <t> Seapoint IR Turbidity</t>	
Port J8:FLR <e> Seapoint CHL Fluorometer <f> Wetlabs CDOM Fluorometer</f></e>	
Port J4i:SER <h> ProOceanus CH4 <m> OceanServer5000 MotionPack ENABLED</m></h>	
Port J5i:SER <k> ProOceanus CO2</k>	
Exit: <x> Save changes <^C> Cancel changes</x>	
Selection [X] ? N Enable the Satlantic SUNA Nitrate (Yes/No) [N] ? y Number of frames per stop-check (1 to 4) ? 3	

Figure 8-3: System Configuration Menu

Conducting pre-deployment *in-situ* SUNA timing tests is recommended to check response time. Collecting more data frames at stop check requires a longer SUNA response time and increases the length of each check stop interval. The desired stop check interval time must be balanced with the number of SUNA frames recorded for each stop check. SUNA response time also varies accoding to nitrate concentration. Example: to record 3 frames, the SUNA response time is approximately 15 seconds (5 + (3 * frames))

4. Specify the number of data frames to capture (from 1 to 4) at each stop check interval and type *X* to exit and save the entry.

```
Port J4:SSP

<B> BioSuite Triplet/PAR

<N> Satlantic SUNA 1 Dk, 3 Lt Enabled Frames per stop check is 3

<O> Aanderaa Optode

<U> bbe FluoroProbe

<W> Wetlabs ECO BBFL2 ----- ENABLED
```

Figure 8-4: Frames per Stop Check

The Dark frame is a SUNA reference frame. This number is 1 and cannot be changed.

Using Bench Test Options

The main Bench Tests and SUNA Bench Tests menu provide options to verify and change sensor settings prior to deployment. The main Bench Tests Menu displays only options available to the installed sensors.

1. From the Profiler Main Menu, type '5' to display the Profiler Bench Tests Menu.

Config:	MPP	IM_CT_CM_FL_TU_C	DP_MP	CF2	V5.09	of	Oct	19	2013
		McLane Resea	arch La	boratories	, USA				
		Pat	ttern P	rofiler					
		S/I	N: ML12	345-01D					
		Pat	Pattern Profiler						
			Main M	lenu					
		Wed Nov	13 10:	00:55 2013		-			
	<1>	Set Time	<5>	Bench Test					
	<2>	Diagnostics	<6>	Deploy Pro	filer				
	<3>	Flash Card Ops	<7>	Offload De	ployme	ent	Data	a	
	<4>	Sleep	<8>	Contacting	McLar	ne			
	<c></c>	Configure							

Figure 8-5: Profiler Main Menu

Configuration: MMP_IM_CT_CM_PA_SC CF2 V5_00 of Dec 7 20	12
Bench Tests	
Fri Dec 7 13:30:20 2012	
Sensor Utilities:	
<1> Seabird 52MP CTD communication	
<2> Seabird 52MP CTD pressure	
<3> Seabird 52MP CTD average pressure	
<4> Seabird 52MP CTD temperature record	
<5> Nortek AguaDopp DVS communication	
<6> Nortek AquaDopp DVS tilt & compass	
System evaluation: <7> Motor operation <8> Release Brake <9> Independent Watchdog <0> Estimate deployment endurance	
System Sensor & Option Tests: <i> Seabird Inductive Modem <m> OceanServer5000 MotionPack <n> Satlantic SUNA</n></m></i>	
Exit: <x> Main Menu Selection [] ?</x>	

Figure 8-6: Profiler Bench Tests Menu

٦

2. From the main Bench Tests menu, type *N* at the prompt to display the SAT/SUNA Bench Test menu.

Configuration: MPP_CT_NI	CF2 V5.00 of Dec 19 2012
SAT/SUNA Bench Test Menu	
Tue Feb 22 11:34:44 2011	
<1> Direct communications (9600 Baud)	
<2> Restore McLane parameters	—— Direct Communications
<3> Restore factory parameters	
<4> Report parameter settings	
<5> Perform a profile test loop	
<6> Perform a sensor self-test	
<7> Set number of frames/stopcheck (2)	
<m> Return to previous Menu</m>	
Selection [M] ? 7	
Number of frames per stop-check (1 to 4) ? 3	
12/19/12 13:44:53 Sat/SUNA Press ^C to terminate CC 12/19/12 13:44:53 Sat/SUNA SYSTEM Press ^B to chang	DMM session. ge or confirm Baud rate.

Figure 8-7: SUNA Bench Test Menu

The Profiler communicates with the SUNA at 9600 baud. If this rate is changed (for example after sensor manufacturer servicing) communicating directly with the sensor displays unrelated characters or a communication error (Figure 8-8). Fix the error by changing the sensor to the baud rate the Profiler requires.

Figure 8-8: Baud Rate Communication Error Examples

Typing [CTRL]-[B] from the sensor-specific Bench Tests menu displays the Baud Rate menu (Figure 8-9). Use this menu option to temporarily connect at the sensor's current baud rate. Once connected to the sensor, change to the profiler-required baud rate. Finally, exit the Baud Rate Menu to resume the communications session.

```
Config: MPP_IM_CT_CM_FL_TU_OP_MP CF2 V5.00 of Jan 10 2013

Pattern Profiler

Select new Baud rate

Fri Jan 11 13:48:30 2013

<1> 1200

<2> 2400

<3> 4800

<4> 9600

<5> 19200

<6> 38400

<7> 57600

<G> Go to COMM session

Selection [] ? g
```

Figure 8-9: Baud Rate Menu

Direct Sensor Connection

Once connected to the SUNA, typing commands at the command prompt provides additional sensor information.

1. Type *1* to connect directly with the SUNA.

Figure 8-10: Option <1> Direct Communications with SUNA

Restore McLane and Factory Settings

Option <2> and Option <3> from the SUNA Bench Test menu provide a way to restore the McLane or Satlantic factory settings on the SUNA. Using option <2> requires typing the password *mclane*. Using option <3> (not shown) also requires a password. Contact McLane before resetting factory parameters.

Figure 8-11: Option <2> Restore McLane Parameters

The profiler firmware requires the SUNA parameters configured by McLane. Changing these settings, including resetting to the factory settings will prevent the SUNA from working correctly with the profiler.

Display Current Settings

Option <4> displays the current SUNA settings.

```
Selection ? 4
14:41:21 Sat/SUNA communication channels opened..
14:41:21 Sat/SUNA powered ON. . .....
14:41:28 Sat/SUNA current parameter settings.
FirmwareVersion: 1.7.1
Identify Pkg:
               61835
               21054
Identify Cal:
LampTime:
               134828
GetSNum:
               0052
GetBaud:
                38400
              POLLED
FULL_BINARY
GetOpMode:
GetTFMode:
               60
GetFMTime:
GetIntPeriod:
               400
GetBLOrder:
               Linear
               217.0
GetFitMin:
               240.0
GetFitMax:
GetNtrDACMin: -5.000000
GetNtrDACMax: 100.00000
GetLFrames:
                1790
GetDFrames:
               10
GetWaterType:
               salt
14:41:39 Sat/SUNA powered OFF.
14:41:39 Sat/SUNA power-down delay .....
14:41:44 Sat/SUNA communication channels closed..
 Exit:
   <M> Main Menu
```

Figure 8-12: Option <4> Report Parameter Settings

Perform Profile Test Loop

Option <5> performs a profile test loop. This test simulates an automated sensor verification and a 5 minute profile. The predefined 5 minute test time allows 2 minutes for sensor warm up, 1 minute for simulated profiling and 2 minutes for sensor warm down.

```
Selection ? 5
14:45:29 Sat/SUNA Automated verification of sensor settings.
14:45:29 Sat/SUNA communication channels opened..
14:45:29 Sat/SUNA powered ON. . .....
14:45:36 Sat/SUNA powered OFF.
14:45:36 Sat/SUNA power-down delay .....
14:45:41 Sat/SUNA communication channels closed..
Press ^C to exit the loop
14:45:42 Sat/SUNA prepping for profile.
14:45:42 Sat/SUNA communication channels opened..
14:45:42 Sat/SUNA powered ON. . .....
14:45:49 Sat/SUNA opening file S000000.DAT for profile 0.
14:45:49 Sat/SUNA writing 4 byte header for profile 0.
14:45:50 Sat/SUNA communication channels closed..
14:45:50 Sat/SUNA performing 20 "stop-checks" at 15 second intervals (5
minutes).
Sat/SUNA profile 0, "stop-check" 1:
14:45:50 Sat/SUNA communication channels opened..
14:45:50 Sat/SUNA acquiring 1 reference sample.
14:45:50 Sat/SUNA sending [DATA] command. . .
14:45:51 Sat/SUNA writing 511 byte block for profile 0. .
14:45:51 Sat/SUNA sending [LON] command. . .
14:45:53 Sat/SUNA acquiring 4 nitrate samples.
14:45:54 Sat/SUNA sending [DATA] command. . .
14:45:54 Sat/SUNA writing 511 byte block for profile 0. .
14:45:55 Sat/SUNA sending [DATA] command. .
14:45:56 Sat/SUNA writing 511 byte block for profile 0. .
14:45:56 Sat/SUNA sending [DATA] command. . .
14:45:57 Sat/SUNA writing 511 byte block for profile 0. .
14:45:57 Sat/SUNA sending [DATA] command. .
14:45:58 Sat/SUNA writing 511 byte block for profile 0. .
14:45:58 Sat/SUNA sending [LOFF] command. . .
14:45:58 Sat/SUNA communication channels closed..0.009866 mg/L nitrate
14:50:51 Sat/SUNA halting profile.
14:50:51 Sat/SUNA writing 519 byte trailer for profile 0.
14:50:52 Sat/SUNA closing file S000000.DAT for profile 0.
14:50:52 Sat/SUNA communication channels opened ..
14:50:52 Sat/SUNA powered OFF.
14:50:52 Sat/SUNA power-down delay .....
14:50:58 Sat/SUNA communication channels closed..
Sat/SUNA test profile 0 succeeded
Press ^C to exit the loop
```

Figure 8-13: Option <5> Perform a profile test loop

Perform Sensor Self Test

Option <6> performs a SUNA self test to verify SUNA operation.

```
Selection ? 6
Press ^C to terminate Sat/SUNA session
14:44:43 Sat/SUNA communication channels opened ..
14:44:44 Sat/SUNA powered ON.
*****
SUNA V1
Submersible Ultraviolet Nitrate Analyzer
Satlantic Inc.
Firmware Version: 1.7.1 (Aug 28 2009, 14:46:06)
Reset source: BROWNOUT
Temperature sensors:
     Lamp housing: FOUND
     Spectrometer: FOUND
RS-232 POLLED MODE
CMD? $
SUNA V1
Submersible Ultraviolet Nitrate Analyzer
Satlantic Inc.
                       (Aug 28 2009, 14:46:06)
Firmware Version: 1.7.1
Type '$Help' for a list of available commands.
Note:commands are case insensitive.
SUNA> $SelfTest - Profiler firmware executes scripted command for SUNA self test to run
*** SUNA DIAGNOSTICS ***
Erasing LOG file, if present...OK
TEST 1 (7.695 s): Memory ... wrote: 19345 read: 19345 OK
TEST 2 (8.008 s): External SRAM ..... Bytes: 32768 Errors: 0 OK
TEST 3 (9.117 s): Temperature Sensor (Lamp Housing)... 25.813 C OK
TEST 4 (9.965 s): Temperature Sensor (Spectrometer)... 25.563 C OK
TEST 5 (10.816 s): Input voltage (VMAIN) ... 11.71 V OK
ŚOk
SUNA> $reboot
$0k
SUNA V1
Submersible Ultraviolet Nitrate Analyzer
Satlantic Inc.
Firmware Version: 1.7.1 (Aug 28 2009, 14:46:06)
Reset source: WATCHDOG
Temperature sensors:
     Lamp housing: FOUND
     Spectrometer: FOUND
RS-232 POLLED MODE
CMD? [^C]
14:45:21 Sat/SUNA powered OFF.
14:45:21 Sat/SUNA power-down delay .....
14:45:27 Sat/SUNA communication channels closed..
```


Option <7> (not shown) provides the option to change the Frames per Stop check as on

the System Configuration menu,

Installing the SUNA in the Sensor Mounting Brackets

The SUNA sensor is removed from the MMP for shipment and must be re-installed prior to deployment. To install the SUNA, complete the following steps:

Figure 8-15: MMP with SUNA Sensor

1. Slide the SUNA into the top and bottom mounting brackets on the MMP.

Figure 8-16: Sliding the SUNA into the Sensor Brackets

2. Using the provided hex driver, tighten the bottom and top mounting bracket screws (Figure 8-17 and 8-18). Connect the 5-pin connector (Figure 8-19 and 8-20).

Figure 8-17 and Figure 8-18: Tightening Bottom and Top Mounting Screws

Figure 8-19 and Figure 8-20: Connect the 5-pin connector

3. Connect the opposite end of the cable (not shown) to the 8-pin connector on the controller housing marked SUNA.

Figure 8-21: Completed SUNA Installation

Figure 8-21 shows the completed SUNA installation.

The SUNA also has a test cable for direct connection to the sensor. This cable is incuded in the Profiler shipment.

Chapter 9 Biospherical Par Sensor

The Biospherical PAR is a single-channel (analog) sensor that measures Irradiance (Photosynthetically Active Radiation). Calculating irradiance with PAR data requires using the Calibration sheet provided with the sensor. This section provides information common to both the QSP-2200, QSP-2300, QCP-2200 and QSP-2300 Par sensors. The PAR Q-series sensors are mechanically integrated with the MMP in the same manner. The MMP may not be shipped with the PAR sensor installed. See the instructions in this section for connecting and installing the PAR sensor. For more information about these sensors, refer to the Biospherical Instruments, Inc. website (www.biospherical.com) or contact Biospherical Instruments, Inc.

Figure 9-1: MMP with PAR Sensor

Collecting Data with the PAR

PAR data is logged as voltage and displayed in the Engineering File as Par mV, as shown

next.

g

Figure 9-2: ENG File with PAR Data

PAR Calibration Sheet Example

The PAR output is voltage that is proportional. Models QCP-2200 and QSP-2200 are linearly proportional to the log of incident irradiance. Models QCP-2300 and QCP-2300 are proportional to the log of incident irradiance. The documentation from the sensor manufacturer includes a Calibration Sheet to calculate irradiance from PAR mV readings.

A sample Calibration sheet for the QCP-2300 is shown on the next page only for reference. Refer to the Calibration sheet specific to the installed PAR for calculating irradiance.

Calibratio Model N Serial N Or Standarc Operating Voltage	on Date: lumber: lumber: perator: f Lamp: 91 Range:	02/09/09 QCP2300 70219 TPC 537(10/25/200	(6) to	उ	VDC (+)		Job No.:	L10177	
Note: The QCP. To calculate irr Irra	2300 out adiance, diance =	put is a volt use this for Calibration	age that is mula: factor * (1	proportio I0^Light S	nal to the ignal Volt	log of the i age - 10^Da	incident irrad ark Voltage)	lance.	
Dry Calibration F Wet Calibration F	Factor: Factor:	3.04E+12 3.20E+12	quanta/cm quanta/cm	2-sec per v 1 ² -sec per v	/olt /olt	5.04E-06 5.31E-06	μEinsteins/c μEinsteins/c	:m²·sec per volt :m²·sec per volt	
Sensor Test Data Sens Lamp In	and Result or Supply C S Integrated P.	ts ²⁾ Surrent (Dark): upply Voltage: AR Irradiance: on Coefficient:	3.4 6 8.83E+15 0.95	mA Volts quanta/cm²	ec.	0.01467	µEinsteins/cm²	sec Test Irrad.	
Nominal Exp Filter OD Trans No Filter 1 0.5 0.5 2 8 3 8 8 7 8 0 8 8 7 8 0 8 8 8 0 0 8 8 8 0 0 0 0	pected smission 00% 32% 10% 11%	Calibrated Trans. 100.00% 36.10% 27.60% 9.27% 1.11% 0.05% 0.00%	Sensor 3.464 3.464 3.023 / 2.910 2.448 1.546 0.421 0.016	Expected Voltage 3.464 3.022 2.905 2.431 1.509 0.192 0.016	Voltage % Error 0% 1% 55% 0%	Measured Trans. 100.00% 36.16% 9.61% 9.61% 1.17% 0.05% 0.00%	Transmission Error (%) 0.0 -0.2 -1.1 -3.5 -5.3 -2.8 -100.0	(quanta/ cm ² .sec) 8.84E+15 3.19E+15 3.19E+15 8.49E+14 1.04E+14 4.97E+12 1.15E+11	······
Dar Light - No Fi Dark Aft Aver Notes: 1. Annual calibration is recommended	rk Before: liter Hldr.: ter - NFH: age Dark	0.016 3.465 0.016 0.0161	Volts Volts Volts Volts						

RESEARCH LABORATORIES, INC.

9-4

- sint

.

Configuring the Firmware to Use the PAR

The Profiler System Configuration Menu specifies the active sensors. Samples/average for the PAR can also be changed. To enable the PAR sensor, complete the following steps:

- 1. From the Main Menu type *c* and enter the password *configure*.
- 2. Select <P> Biospherical Par and then type *Y* to enable the sensor. Type <1> or <2> to select the PAR sensor model. Optionally enter a new 'samples to average' measurement between 1 and 100 and type *X* to exit and save.

```
Config: MPP IM CT CM MP
                                      CF2 V5.16 of Aug 22 2014
                        Pattern Profiler
                      System Configuration
                  Mon Aug 25 15:00:43 2014
 System Parameters:
 <0> Battery capacity
                                   240 Ah
 Sensor Suite:
     Port J9:CTD
 <1> Seabird 52MP CTD ----- ENABLED
     Port J5:ACM
  <2> Falmouth Scientific 2d ACM ---- ENABLED
     Port J6:IMM
 <I> Telemetry ----- ENABLED IMM @ 1200 Baud
     Port J4:SSP
 <B> BioSuite Triplet/PAR
  <N> Satlantic SUNA Nitrate
  <O> Aanderaa Optode
 <U> bbe FluoroProbe
 <W> Wetlabs ECO BBFL2
     Port J10:SPR
  <L> Wetlabs ECO FLBB(RT)/D
  <P>> Biospherical PAR
     Port J7:TRB
 <T> Seapoint IR Turbidity
     Port J8:FLR
 <E> Seapoint CHL Fluorometer
  <F> Wetlabs CDOM Fluorometer
     Port J4i:SER
  <H> ProOceanus CH4
  <M> OceanServer5000 MotionPack ---- ENABLED
     Port J5i:SER
 <K> ProOceanus CO2
                                                      Example: Averaging '10'
Exit:
                                                      causes the firmware to
                   <^C> Cancel changes
 <X> Save changes
                                                      calculate a voltage
Selection [] ? p
                                                      average from 10 samples
Enable the "Biospherical PAR" [Y] ? y
Select 1 = QSP/QCP-2200, 2 = QSP/QCP-2300 (1-2) [1] ? 2
Enter number of measurements to average (1-100) [5] ? 10
```

Figure 9-3: System Configuration Menu

Using Bench Test Options

The Bench Tests menu provides an option to verify and change sensor settings prior to deployment. The main Bench Tests Menu displays only options the are available to installed sensors.

1. From the Profiler Main Menu, type 5 to display the Profiler Bench Tests Menu.

Config:	MPP	IM	CT_CM_FL	TU OP	MP	CF	2 V5.09	of	Oct	19	2013
	_		McLane	Researd	- ch La	aboratori	es, USA				
				Patte	ern l	Profiler					
				S/N:	ML12	2345-01D					
				Patte		Profiler		_			
				ratic	stn M	Many					
				Me	a⊥n r	Merru					
		Wed Nov 13 10:00:55 2013									
	<1>	Set	Time		<5>	Bench Te	st 🗲				
	<2>	Dia	gnostics		<6>	Deploy P:	rofiler				
	<3>	Fla	sh Card	Ops	<7>	Offload 1	Deploym	ent	Data	a	
	<4>	Sle	ep		<8>	Contacti	ng McLa	ne			
	<c></c>	Con	figure								

Figure 9-4: Profiler Main Menu

Configuration:	MMP_IM_CT_CM_PA_SC	CF2 V5_00	of Dec	7 2012
	Bench Tests			
		0 2012	-	
Sensor Utiliti <1> Seabird 5 <2> Seabird 5 <3> Seabird 5 <4> Seabird 5	es: 2MP CTD communication 2MP CTD pressure 2MP CTD average pressure 2MP CTD temperature reco	e ord		
<5> Nortek Aq <6> Nortek Aq	uaDopp DVS communication uaDopp DVS tilt & compar	n ss		
System evaluati <7> Motor ope <8> Release B <9> Independe <0> Estimate	on: ration rake nt Watchdog deployment endurance			
System Sensor <i> Seabird I <m> OceanServ <p> Biospheri</p></m></i>	& Option Tests: nductive Modem er5000 MotionPack cal PAR			
Exit: <x> Main Menu Selection []</x>	?			

Figure 9-5: Profiler Bench Tests Menu

Direct Sensor Connection

- 1. From the main Profiler Bench Tests menu, type P Biospherical PAR.
- 2. Optionally change PAR samples to average for testing purposes.
- 3. Press [CTRL]-[C] to exit.

```
Bench Tests
                    Thu Dec 6 16:17:44 2012
 Sensor Utilities:
  <1> Seabird 52MP CTD communication
  <2> Seabird 52MP CTD pressure
  <3> Seabird 52MP CTD average pressure
  <4> Seabird 52MP CTD temperature record
  <5> Nortek AquaDopp DVS communication
  <6> Nortek AquaDopp DVS tilt & compass
 System Evaluation:
  <7> Motor operation
  <8> Set Brake
  <9> Independent Watchdog
  <0> Battery endurance
System Sensor & Option Tests:
  <I> Seabird Inductive Modem
  <M> OceanServer5000 MotionPack
 <P>> Biospherical PAR
 <W> Wetlabs ECO BBFL2
Exit:
 <X> Main Menu
 Selection [] ? p
Enter number of PAR samples to average (1-100) [5] ?
Press ^C to exit, or any other key to pause | continue.
12/06/12 16:31:48 BII/PAR Powered on.
12/06/12 16:31:48 BII/PAR 0.0 mV, 12.6Vb.
12/06/12 16:31:49 BII/PAR 0.0 mV, 12.6Vb.
12/06/12 16:31:50 BII/PAR 1.2 mV, 12.7Vb.
12/06/12 16:31:51 BII/PAR 0.0 mV, 12.6Vb.
                                                   — PAR Analog Voltage
                                             ╉—
12/06/12 16:31:52 BII/PAR 0.0 mV, 12.6Vb.
12/06/12 16:31:53 BII/PAR 0.8 mV, 12.6Vb.
12/06/12 16:31:54 BII/PAR 1.4 mV, 12.6Vb.
12/06/12 16:31:55 BII/PAR 0.0 mV, 12.6Vb.
```

Figure 9-6: PAR Direct Communications

Connecting the PAR Sensor

To connect and install the PAR Q series sensors, complete the following steps (the QCP-

2300 sensor is illustrated):

- 1. Connect the PAR sensor to the 4 pin bulkhead connector.
- 2. Gently slide the PAR sensor into the hole at the top of the MMP.

Figure 9-7: Connecting to the Bulkhead

Figure 9-8: Sliding in the PAR

- 3. Slide the white sensor clamp over the PAR and tighten the 8-32 socket cap screws.
- 4. Gently push the sensor clamp back into place.

Figure 9-9: Securing the Sensor Clamp

Figure 9-10:Re-inserting the Clamp

- 5. Using a hex screwdriver, tighten the $3/1-16 \times 1$ " long nylon socket cap screws.
- 6. Replace the MMP Skin.

Figure 9-11: Tightening the Socket Cap Screws

Figure 9-12: PAR Sensor Installed

Removing the PAR Sensor

To disconnect and remove the PAR, complete the following steps:

- 1. Lay the MMP on its side on a stable surface and remove the Top skin.
- 2. Using a Hex driver (included in the toolkit), remove the 3/8-16 x 1" long nylon socket cap screws from the white PAR sensor clamp.
- 3. Loosen the sensor clamp.

Figure 9-13: Unscrewing the Socket Cap Screws

Figure 9-14: Loosening the Sensor Clamp 4. Pull the sensor clamp out to expose the two 8-32 socket cap screws.

5. Using a screwdriver, loosen the 8-32 socket cap screws that hold the sensor in the clamp.

Figure 9-15: Pulling Out the Sensor Clamp

Figure 9-16: Loosening the Clamp Screws

- 6. While holding the PAR securely, gently pull the sensor out from the top of the MMP.
- 7. Remove the PAR from the bulkhead connector.

Figure 9-17: Pulling Out Sensor Clamp

Figure 9-18: Removing Bulkhead Connector

8. Cap the PAR sensor when not in use.

Figure 9-19: Placing the Cap on the PAR

Notes

Section 9.1 PAR QSP-2200 Sensor

MMP firmware release versions 5.00 and above support the Biospherical Instruments Inc QSP-2200 PAR. This irradiance sensor is depth-rated to 2000 meters. The QSP-2200 is a scalar irradiance sensor which produces an analog voltage output that is directly proportional to the incident irradiance upon the sensing plane of the collector.

Figure 9.1-1: PAR QSP-2200 Sensor

Calculating irradiance with PAR data requires using the Calibration sheet provided with the sensor.

Notes

Section 9.2 PAR QCP-2300 Sensor

MMP Release versions 4.09 or 4.20 and above support the Biospherical Instruments Inc QCP-2300 PAR. This irradiance sensor is depth-rated to 2000 meters. The model QCP-2300 is designed for use with commercially available CTD's and dataloggers that require an analog voltage as signal input.

Figure 9.2-1: MMP with PAR QCP-2300 Sensor

Calculating irradiance with PAR data requires using the Calibration sheet provided with the sensor.

Notes

Chapter 10 Seapoint Turbidity/Fluorometer – General Info

The Seapoint Turbidity Meter detects light scattered by particles suspended in water. The Seapoint Chlorophyll Fluorometer (SCF) is a high-performance, low power instrument for in situ measurements of chlorophyll.

Figure 10-1: MMP with Turbidity and Fluorometer Sensors

Collecting Data with the Turbidity Sensor

Seapoint Turbidity data is logged as voltage and displayed in the Engineering File, as

shown next.

Profile 2 Sensors we: Vehicle bea	re turned o gan profil:	on at ing at	05/21/2014 05/21/2014	08:43:25 08:45:02	Turbidity ↓			
Date Temp[C]	Time	[mA]	[V]	[dbar]	Turb[mV]	Gain	Oxygen[uM]	Optode
05/21/2014 05/21/2014 05/21/2014 05/21/2014 05/21/2014	08:45:02 08:45:17 08:45:31 08:45:46 08:46:01	-19 40 40 39 39	11.5 11.5 11.5 11.5 11.5	0.000 0.000 0.010 0.010 0.000	1338.60 1338.80 1339.40 1339.80 1340.20	1 1 1 1	16014.64 16014.64 259.20 259.33 259.41	0.00 0.00 21.93 21.93 21.93
Ramp exit: Profile ex:	SMOOTH it: TIMER	H RUNNI EXPIRE	ING Ed					
Vehicle mo [:] Sensor logo	tion stoppe ging stoppe	ed at (ed at ()5/21/2014)5/21/2014	08:46:05 08:48:08				

Figure 10-2: ENG File with Turbidity Data

Configuring the Firmware to Use Turbidity/Fluorometer Sensors

The Profiler System Configuration Menu specifies the active sensors.. To enable the Turbidity or Fluorometer sensors, complete the following steps:

- 1. From the Main Menu type c and enter the password configure.
- 2. Select <T> Seapoint Turbidity or <E> Seapoint CHL Fluorometer and then type *Y* to enable the sensor.

```
CF2 V5.12 of Feb 11 2014
Config: MPP IM CT CM PA SC MP NI
                       Pattern Profiler
                     System Configuration
                  Tue Mar 11 15:37:44 2014
 System Parameters:
 <0> Battery capacity
                                 240 Ah
 Sensor Suite:
     Port J9:CTD
 <1> Seabird 52MP CTD ----- ENABLED
     Port J5:ACM
 <2> Nortek AquaDopp DVS ----- ENABLED AquaDopp-2
     Port J6:IMM
 <I> Telemetry ----- ENABLED IMM @ 1200 baud
     Port J4:SSP
 <B> BioSuite Triplet/PAR
 <N> Satlantic SUNA 1 Dk, 3 Lt ----- ENABLED
 <O> Aanderaa Optode
 <U> bbe FluoroProbe
  <W> Wetlabs ECO BBFL2 ----- ENABLED
Port J10:SPR
 <L> Wetlabs ECO FLBB(RT)/D
 <P>> Biospherical PAR -----
     Port J7:TRB
 <T> Seapoint IR Turbidity ----- ENABLED @ 3 samp/avg
     Port J8:FLR
 <E> Seapoint CHL Fluorometer ----- ENABLED
 <F> Wetlabs CDOM Fluorometer
     Port J4i:SER
 <H> ProOceanus CH4
 <M> OceanServer5000 MotionPack ---- ENABLED
     Port J5i:SER
 <K> ProOceanus CO2
Exit:
 <X> Save changes <^C> Cancel changes
   Selection [] ? t
Enter number of measurements to average (1-100) [10] ? 3
```

Figure 10-3: System Configuration Menu

Using Bench Test Options

The Bench Tests menu provides an option to verify and change sensor settings prior to deployment. The main Bench Tests menu displays only options that are available to installed sensors.

1. From the Profiler Main Menu, type 5 to display the Profiler Bench Tests Menu.

Config:	MPP	IM_CT_CM_FL_TU_OP	MP	CF2 V5.09	of	Oct	19	2013	
		McLane Resear	ch Laborato	ories, USA					
		Patte	ern Profile	er					
		S/N:	ML12345-0	1D					
					_				
		Patte	ern Profile	er					
		Ma	ain Menu						
					_				
		Wed Nov 1	3 10:00:55	2013					
	<1>	Set Time	<5> Bench	Test					
	<2>	Diagnostics	<6> Deploy	y Profiler					
	<3>	Flash Card Ops	<7> Offloa	ad Deployme	ent	Data	a		
	<4>	Sleep	<8> Contac	cting McLar	ne				
	<c></c>	Configure							

Figure 10-4: Profiler Bench Tests Menu

Configuration: 1	MMP_IM_CT_CM_PA_SC	CF2 V5_00	of Dec	7 2012
-	Bench Tests		-	
-	Fri Dec 7 13:30:20	2012	-	
Sensor Utilitie	es:			
<pre><1> Seabird 52 <2> Seabird 52 <3> Seabird 52 <4> Seabird 52 <4> Seabird 52 <4> Seabird 52 <4> Seabird 52 </pre>	2MP CTD communication 2MP CTD pressure 2MP CTD average pressure 2MP CTD temperature recou	cd		
<5> Nortek Aqu <6> Nortek Aqu	uaDopp DVS communication uaDopp DVS tilt & compass	5		
System evaluation <7> Motor ope: <8> Release B: <9> Independer <0> Estimate of	on: ration rake nt Watchdog deployment endurance			
System Sensor (<i> Seabird I) <e> Seapoint (<t> Seapoint)</t></e></i>	& Option Tests: nductive Modem CHL Fluorometer IR Turbidity	_		
Exit: <x> Main Menu Selection []</x>	?			

Figure 10-5: Profiler Main Menu

٦

Direct Sensor Connection

- 1. From the main Profiler Bench Tests menu, type T Seapoint Turbidity.
- 2. Optionally change samples to average for testing purposes.
- 3. Press [CTRL]-[C] to exit.

```
Bench Tests
                    Thu Dec 6 16:17:44 2012
Sensor Utilities:
 <1> Seabird 52MP CTD communication
 <2> Seabird 52MP CTD pressure
 <3> Seabird 52MP CTD average pressure
 <4> Seabird 52MP CTD temperature record
 <5> Nortek AquaDopp DVS communication
 <6> Nortek AquaDopp DVS tilt & compass
System Evaluation:
 <7> Motor operation
 <8> Set Brake
 <9> Independent Watchdog
 <0> Battery endurance
System Sensor & Option Tests:
 <I> Seabird Inductive Modem
 <E> Seapoint CHL Fluorometer
 <T> Seapoint IR Turbidity
Exit:
 <X> Main Menu
 Selection [] ? t
      Set Turbidity Sensor Gain:
        <A> Automatic
        <1> Fixed 1X
        <2> Fixed 5X
        <3> Fixed 20X
        <4> Fixed 100X
        Selection [A] ? a
Enter number of measurements to average (1 to 100) ? 3
Press ^C to exit, or any other key to pause | continue.
```

Figure 10-6: Set Turbidity Gain

05/21/2014 13:51:54	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:51:56	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:51:57	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:51:58	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:51:59	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:00	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:01	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:02	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:03	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:04	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:05	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:06	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:07	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:08	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:09	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:10	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:11	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:12	Turbidity:	100.37	FTU	4015	mV,	20X	Battery: 11.1 V
05/21/2014 13:52:14	Turbidity:	114.47	FTU	1145	mV,	05X	Battery: 11.1 V
05/21/2014 13:52:15	Turbidity:	114.43	FTU	1144	mV,	05X	Battery: 11.1 V
05/21/2014 13:52:16	Turbidity:	112.47	FTU	1125	mV,	05X	Battery: 11.1 V
• • • • • • • • • • • • • • • • • • •	— Display s	shortene	d foi	r hrev	itv		
	Diopidy		u 101	5101	,		
05/21/2014 13:52:30	Turbidity:	349.67	FTU	699	mV,	01X	Battery: 11.1 V
05/21/2014 13:52:31	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:33	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:34	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:35	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:36	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:37	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:38	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:39	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V
05/21/2014 13:52:40	Turbidity:	0.00	FTU	0	mV,	100X	Battery: 11.1 V

Figure 10-7: Turbidity Direct Communications

Turbidity/Fluorometer Shared Bulkhead Implementation

If both of these sensors are installed on the Profiler, the implementation may share a single bulkhead As shown in Figures 10-8 the MMP End Cap with a 12-pin center MCBH bulkhead connector is wired to both the Fluorometer and Turbidity Sensors.

Figure 10-8: MMP with Turbidity and Fluorometer MCBH Connector

Notes

Chapter 11 Inductive Communications

The inductive communications option can transmit deployment files near real-time. This option requires a customer-supplied surface controller package. The following inductive communications coils are integrated with the Profiler firmware and hardware:

- Sea-Bird IMM (1200 baud rate inductive telemetry)
- RBR MLM (4800 baud rate inductive telemetry)

Figure 11-1: Inductive Coil

Regardless of Inductive Modem model, the Profiler firmware use the same Transmission Protocol. Refer to Appendix A in this User Manual, 'Inductive File Transmission Protocol' for details about inductive commands. The Sea-Bird UIM is an obsolete inductive modem. This inductive option is documented in Appendix B in this User Manual 'Sea-Bird UIM'.

This chapter describes the inductive options in the order below.

Inductive C	Communications Chapter Contents
Section	Торіс
11.1	Sea-Bird Inductive Model Module (IMM)
11.2	RBR Mooring Line Modem (MLM)

Patterned profiling is a deployment programming method available through a McLane application called Deployment Planner. This programming method also has inductive settings. Refer to the section on Deployment Planner in the MMP User Manual for more detailed information about inductive profiles and the Deployment Planner.

Configuring the Firmware to Use Inductive Communications

The Profiler System Configuration menu specifies the active sensors. To enable Inductive Telemetry, complete the following steps:

- 1. From the Main Menu type *c* and enter the password *configure*.
- 2. Select <I>. An option to select the type of inductive telemetry displays.

```
Config: MPP IM CT CM PA SC MP NI
                                          CF2 V5.12 of Feb 11 2014
                       Pattern Profiler
                     System Configuration
                  Tue Mar 11 15:37:44 2014
 System Parameters:
 <0> Battery capacity
                                  240 Ah
 Sensor Suite:
    Port J9:CTD
 <1> Seabird 52MP CTD ----- ENABLED
     Port J5:ACM
 <2> Nortek AquaDopp DVS ----- ENABLED AquaDopp-2
     Port J6:IMM
 <I> Telemetry ----- ENABLED IMM @ 1200 baud
     Port J4:SSP
 <B> BioSuite Triplet/PAR
 <N> Satlantic SUNA 1 Dk, 3 Lt Enabled
 <O> Aanderaa Optode
 <U> bbe FluoroProbe
 <W> Wetlabs ECO BBFL2 ----- ENABLED
Port J10:SPR
 <L> Wetlabs ECO FLBB(RT)/D
 <P> Biospherical PAR ----- ENABLED @ 5 samp/avg
     Port J7:TRB
 <T> Seapoint IR Turbidity
     Port J8:FLR
 <E> Seapoint CHL Fluorometer
 <F> Wetlabs CDOM Fluorometer
     Port J4i:SER
 <H> ProOceanus CH4
 <M> OceanServer5000 MotionPack ---- ENABLED
     Port J5i:SER
 <K> ProOceanus CO2
 Exit:
 <X> Save changes <^C> Cancel changes
Selection [X] ? i
Enable the "Inductive Telemetry" [Y] ?
Select 1 = UIM, 2 = IMM, 3 = MLM (1-3) [0] ? 2 Inductive Settings
```

Figure 11-2: Select Telemetry Type

Notes

Section 11.1 Sea-Bird Inductive Model Modem (IMM)

Profiler firmware versions 4.16/4.26 and higher support the Sea-Bird IMM board (with an inductive coupler around the mooring wire. A surface controller with a Sea-Bird IMM board (the SIMM) is also required for this option. This section describes SIMM/UIMM functions.

Regardless of Inductive Modem, the Profiler Firmware uses the same Transmission Protocol. Refer to Appendix A in this User Manual, 'Inductive File Transmission Protocol' for details about inductive commands.

Figure 11.1-1: Sea-Bird IMM Modem

Advanced Interface Options – Inductive Communications

The options that display on the Advanced Interface menu are sensor-dependent. When Inductive Communications are active, several options display for Inductive Communications settings. Advanced Interface settings are critical controls for inductive communications performance. Carefully review the option definitions provided in this section or contact McLane (www.mclanelabs.com) for more information.

Menu commands with "IMM" refer specifically to the Seabird IMM (Inductive Modem Module) and are only available if the Seabird IMM is attached and enabled. Command descriptions with "IM" refer generically to all Profiler inductive modem hardware variations.

onfigu	ration: MPP_IM_CT		CF2 V5.00	of Jan	3 2013
	Pattern	Profil	Ler	-	
	Advanced	Interf	face		
	 Fri Jan 4 11	:07:35	5 2013	-	
<0> F	TullSpeed	0.250	dbar/sec		
<1> P	PR Threshold	0.045	dbar/sec		
<2> P	PR TimeThreshold	180	seconds		
<3> S	Sensor warmup	120	seconds		
<4> S	Sensor warmdown	120	seconds		
<5> F	SI/CTD Bytes/Second	17	bytes/sec		
<6> S	BE/41CP Bytes/Second	9	bytes/sec		
<7> S	BE/52MP Bytes/Second	11	bytes/sec		
<8> F	SI/ACM Bytes/Second	33	bytes/sec		
<d> D <h> H</h></d>	Display verbose messages History reset	YES			
<m> p</m>	profiling Mode PA	TTERN			
<n> a</n>	djust profile couNter	-1			
<p> c</p>	aPture file enabled	NO			
<f> I</f>	MM use Force capture line	YES		— IMM Onti	ions
<k> I</k>	M ACK/NAK reply timer	100	seconds	Opt	
<l> I</l>	M Listening loop timer	40	seconds		
<s> I</s>	MM configure Surface modem	NO			
<w> I</w>	MM send Wakeup tone	YES			
<x> S</x>	Save any changes <^C> Di	scard	changes		

Figure 11.1-2: Inductive Telemetry Settings on the Advanced Interface Menu

IMM Use Force Capture Line

Option <F> issues a forced capture line to the modem. If set to 'Yes', the modem will use the line regardless of whether noise is present. If this is 'No', the modem will not use the line until it detects the line is free.

```
Selection [X] ? f
IMM use Force capture line (Yes/No) [N] Yes
```

Figure 11.1-3: IMM use Force Capture Line

IM ACK/NAK Reply Timer

Option $\langle K \rangle$ sets the number of seconds the profiler firmware waits for a reply/response from the modem after each data packet is sent. If the maximum number of seconds are exceeded, the firmware goes to the next reply/response attempt. After a total of three attempts, the firmware moves to the next data packet. The default is 100 seconds. The timer can be changed to between 30 and 300 seconds.

IM Listening Loop Timer

Option $\langle L \rangle$ sets the number of seconds the profiler listens for the inductive modem command from the surface controller. The profiler waits the number of specified seconds for three separate attempts. After a third attempt where no surface command is detected the profiler advances to the next profile. The default is 40 seconds. The timer can be changed to between 30 and 300 seconds.

IMM Configure Surface Modem

Option <S> displays for inductive communications only if Patterned Profiling is the profiling mode. If the entry is 'Yes' the Profiler firmware automatically configures the surface controller modem. If the value is 'No' the Profiler will not configure the surface controller modem. This option requires the password *surface*.

IMM Send Wakeup Tone

Option <W> controls whether or not the Profiler sends a wakeup signal to the surface controller. Some surface packages may not require a wakeup tone.

Using Bench Test Options

The main Bench Test and Inductive Modem Bench Test menus provide options to verify and change inductive settings prior to deployment. The main Bench Tests Menu displays only options that are available to installed sensors.

1. From the main Profiler Menu, type 5 at the prompt to display the main Bench Tests Menu.

Config: MPP_CT			CF2 V5.00 o	f Jan 1	1 2013
	McLane Resea Pat S/N	arch La tern P N: ML12	boratories, USA Profiler 2345-001		
		Main M	lenu		
	Tue Feb	19 07:	16:21 2013		
<1> Set	Time	<5>	Bench Test		-
<2> Dia	gnostics	<6>	Deploy Profiler		
<3> Fla	sh Card Ops	<7>	Offload Deploymen	t Data	
<4> Sle <c> Con:</c>	ep figure	<8>	Contacting McLane		

Figure 11.1-4: Profiler Main Menu

Config: MPP_IM_CT_CM_FL_TU_OP_MP	CF2	V5.13	of	Мау	05	2014
Pattern Profil	ler		-			
Bench Tests						
Tue May 6 09:01:52	2014		-			
CTD utilities:						
<1> Seabird 41CP CTD communication <2> Seabird 41CP CTD pressure <3> Seabird 41CP CTD average pressure <4> Seabird 41CP CTD temperature reco	; ord					
System evaluation: <7> Motor operation <8> Set Brake <9> Independent Watchdog <d> Detailed schedule <s> Recover schedule</s></d>						
Sensor & Option tests: <i> Seabird Inductive Modem</i>						
Exit: Selection [] ? m						

Figure 11.1-5: Profiler Bench Tests Menu

2. From the main Bench Tests menu, type *I* at the prompt to display the Seabird IMM Bench Test Menu (Figure 11.1-6).

3. Type I to connect directly with the IMM	h the IMM.	ct directly w	. Type 1 to	3.
--	------------	---------------	-------------	----

Config: MPP_IM_CT	C	F2 V5.13 of	May 15 2014
Seabird In	Pattern Profiler Inductive Modem Benc	h Test Menu	
Tu	ue May 27 11:30:32 2	014	
<pre><1> Direct communicat: <2> restore McLane pa: <3> restore Factory pa <4> Report parameter s <5> Single transaction <6> Telemetry session</pre>	cions (9600 Baud) prameters parameters settings pn	——— D	irect Communications
<m> return to previous</m>	is Menu		
election [] ? 1			
5/27/14 11:31:19 SBE, 5/27/14 11:31:19 SY:	C/IMM Press ^C to STEM Press ^B to	terminate change or	COMM session. confirm Baud rate.
5/27/14 11:31:20 SBE, 5/27/14 11:31:20 SBE,	C/IMM 9.6 kBaud c C/IMM Powered on.	ommunicatio	n channel opened.

Figure 11.1-6: IMM Bench Test Menu

The Profiler communicates with the Sea-Bird IMM at 9600 baud. If this rate is changed (for example after sensor manufacturer servicing) communicating directly with the sensor displays unrelated characters or a communication error (Figure 11.1-7). Fix the error by changing the sensor to the baud rate the Profiler requires.

Figure 11.1-7: Baud Rate Communication Error Examples

Typing [CTRL]-[B] from the sensor-specific Bench Tests menu (Figure 11.1-6) displays the Baud Rate menu (Figure 11.1-8). Use this menu option to temporarily connect at the sensor's current baud rate. Once connected to the sensor, change to the Profiler-required baud rate. Finally, exit the Baud Rate Menu to resume the communications session.

```
Config: MPP_IM_CT_CM_FL_TU_OP_MP CF2 V5.00 of Jan 10 2013

Pattern Profiler

Select new Baud rate

Fri Jan 11 13:48:30 2013

<1> 1200

<2> 2400

<3> 4800

<4> 9600

<5> 19200

<6> 38400

<7> 57600

<G> Go to COMM session

Selection [] ? g
```

Figure 11.1-8: Baud Rate Menu

Direct Sensor Connection

Once connected directly to the IMM, typing commands at the command prompt provides additional sensor information.

```
Selection [] ? 1
05/27/14 11:31:19 SBE/IMM Press ^C to terminate COMM session.
05/27/14 11:31:19 SYSTEM Press ^B to change or confirm Baud rate.
05/27/14 11:31:20 SBE/IMM 9.6 kBaud communication channel opened.
05/27/14 11:31:20 SBE/IMM Powered on.
<PowerOn/>
IMM>getsd
<StatusData DeviceType='SBE90554 IMM' SerialNumber='70002367'>
<HostID>Host ID not set</HostID>
<EventSummary numEvents='7'/>
<Power><TransmitVoltage>9.1</TransmitVoltage></Power>
<SampleDataSummary NumSamples='0' TotalLen='0' FreeMem='16384'/>
<HostFileSummary Len='0' CRC='0xFFFFFFF'/>
<LineStatus>BUSY</LineStatus>
</StatusData>
<Executed/>
IMM>getcd
<ConfigurationData DeviceType='SBE90554 IMM' SerialNumber='70002367'>
<Settings ConfigType='2'
DebugLevel='2'
BaudRate='9600'
HostID='Host ID not set'
GdataStr='GDATA'
HostPrompt='x'
ModemPrompt='IMM>'
DeviceID='1'
EnableHostFlagWakeup='0'
EnableHostFlagConfirm='0'
EnableHostFlagTerm='0'
EnableSerialIMMWakeup='1'
EnableHostPromptConfirm='1'
EnableHostServeOnPwrup='0'
EnableAutoIMFlag='1'
EnablePrompt='1'
EnableHostWakeupCR='1'
EnableHostWakeupBreak='0'
EnableEcho='0'
EnableSignalDetector='1'
EnableToneDetect='0'
EnableFullPwrTX='0'
EnableBackSpace='1'
EnableGDataToSample='0'
EnableStripHostEcho='0'
EnableBinaryData='1'
```

Figure 11.1-9: IMM Direct Communications (screen 1 of 2)


```
SerialType='1'
TermToHost='254'
TermFromHost='255'
SerialBreakLen='5'
MaxNumSamples='40'
GroupNumber='0'
THOSTO='0'
THOST1='5'
THOST2='3000'
THOST3='12000'
THOST4='100'
THOST5='5'
TMODEM2='3000'
TMODEM3='18000'
TMODEM4='100'
/>
</ConfigurationData>
<Executed/>
IMM>gethd
<HardwareData DeviceType='SBE90554 IMM' SerialNumber='70002367'>
<Manufacturer>Sea-Bird Electronics, Inc</Manufacturer>
<HardwareVersion>41420H</HardwareVersion>
<HardwareVersion>PCB Type 3, 10345B</HardwareVersion>
<MfgDate>2014-03-05</MfgDate>
<FirmwareVersion>1.14 Jan 13 2012 16:32:44</FirmwareVersion>
<FirmwareLoader>MSP LOADER RS232 57.6K 2007-02-08</firmwareLoader>
</HardwareData>
<Executed/>
IMM> [^C]
05/27/14 11:31:36 SBE/IMM
                           Powered off.
05/27/14 11:31:36 SBE/IMM
                          9.6 kBaud communication channel closed.
```

Figure 11.1-10: IMM Direct Communications (screen 2 of 2)

Restore McLane and Factory Settings

Option <2> and <3> from the Seabird Inductive Modem Bench Test menu restores the McLane or Sea-Bird factory settings. Figure 11.1-11 shows a reset of the McLane-defined parameters. Using option <2> requires typing the password *mcl*.

```
Selection [] ? 2 Password: ***
06/03/14 09:45:04 SBE/IMM 9.6 kBaud communication channel opened.
06/03/14 09:45:04 SBE/IMM Powered on.
06/03/14 09:45:04 SBE/IMM Sending com
06/03/14 09:45:19 SBE/IMM Sending com
                                          Sending command [\r\n].
                                          Sending command [SETDEBUGLEVEL=2]. .
06/03/14 09:45:20 SBE/IMM Sending command [SETTERMFROMHOST=255].
06/03/14 09:45:20 SBE/IMM Sending command []. . .
06/03/14 09:45:20 SBE/IMM Sending command []. . .
06/03/14 09:45:20 SBE/IMM Sending command [SETModemPrompt=IMM>]...
06/03/14 09:45:21 SBE/IMM Sending command [SETDebugLevel=2]...
06/03/14 09:45:22 SBE/IMM Sending command [SETDeviceID=1]. . .
06/03/14 09:45:22 SBE/IMM Sending command [SETEnableAutoIMFlag=1]. . .
06/03/14 09:45:23 SBE/IMM Sending command [SETEnableBackSpace=1]. . .
06/03/1409:45:23SBE/IMMSending command [SETEnableBinaryData=1]...06/03/1409:45:24SBE/IMMSending command [SETEnableEcho=0]...06/03/1409:45:25SBE/IMMSending command [SETEnableFullPwrTX=0]...06/03/1409:45:25SBE/IMMSending command [SETEnableFullPwrTX=0]...
. .
06/03/14 09:45:43 SBE/IMM
                                          Sending command [SETTMODEM4=100]. . .
06/03/14 09:45:44 SBE/IMM Sending command [SETSerialType=1]. .....

      06/03/14
      09:45:44
      SBE/IMM
      Sending command [SETSerialType=1]...

      06/03/14
      09:45:46
      SBE/IMM
      Sending command [].

                                          Sending command [SETBaudRate=9600]. .....
06/03/14 09:45:47 SBE/IMM Sending command [SETBaudRate=9600]...
06/03/14 09:45:48 SBE/IMM Sending command [].
06/03/14 09:45:49 SBE/IMM Sending command [].
06/03/14 09:45:49 SBE/IMM Was able to restore McLane parameters.
06/03/14 09:45:49 SBE/IMM Powered off.
06/03/14 09:45:49 SBE/IMM Power-down delay .....
06/03/14 09:45:51 SBE/IMM 9.6 kBaud communication channel closed.
```

Figure 11.1-11: Option <2> Restore McLane Settings

Option <3> 'Restore factory parameters' (not shown) restores the configuration parameters delivered with the SBE Inductive Modem. Option <3> requires the password factory.

The firmware requires the Sea-Bird parameters configured by McLane. Changing settings, or resetting to the factory settings prevents the IMM from working correctly with the Profiler.

Display Current Settings

Option <4> 'Report Parameter Settings' is active only for the RBR MLM inductive modem. See Section 11.2 in this User Manual for more information about the RBR Inductive Modem.

Figure 11.1-12: Option <4> Report Parameter Settings

Single Transaction

Option <5> displays a single inductive file transmission.

Selection [] ? 5		
06/03/14 09:45:57	SBE/IMM	9.6 kBaud communication channel opened.
06/03/14 09.45.57	SDE/IMM	Fowered on.
06/03/14 09.45.57	SDE/IMM SDE/IMM	Sending command [SETDERUCIEVEL-2]
06/03/14 09:46:13	SDE/IMM	Sonding command [SETTEDMEDOGLEVEL-2]
06/03/14 09.46.13	SBE/IMM SBE/IMM	Sending command []
06/03/14 09.46.13	SBE/IMM SBE/IMM	Sending command [].
06/03/14 09:46:13	SBE/IMM SBE/IMM	Sending command [GETCD]
06/03/14 09:46:17	SBE/IMM	Sending command [FORCECAPTURELINE]
06/03/14 09:46:18	SBE/IMM	Sending command [SENDWAKEUPTONE]
06/03/14 09:46:22	SBE/IMM	Sending command [#G0:000MMP/ML13198-07/001/01]
06/03/14 09:46:23	SBE/IMM	Sending command [RELEASELINE]
06/03/14 09:46:24	SBE/IMM	Sending command [PWROFF]
06/03/14 09:46:25	SBE/IMM	Listening attempt 1 of 3.
06/03/14 09:46:32	SBE/IMM	Received [REQNEW] command.
06/03/14 09:46:33	SYSTEM	Sending PROFILES.DAT.
06/03/14 09:46:33	SYSTEM	Sending 52 bytes of packet 0 (metadata)
06/03/14 09:46:33	SYSTEM	Waiting for ACK NAK Received ACK
06/03/14 09:46:35	SYSTEM	Sending 4 bytes of file data.
06/03/14 09:46:35	SYSTEM	Sending 12 bytes of packet 1 (hdr+data)
06/03/14 09:46:35	SYSTEM	Waiting for ACK NAK Received ACK
06/03/14 09:46:37	SYSTEM	Sending 8 bytes of packet 2 (crc)
06/03/14 09:46:38	SYSTEM	Uploaded 4 bytes in 3 seconds. ~1 CPS.
06/03/14 09:46:38	SBE/IMM	Processed [REQNEW] command.
06/03/14 09:46:43	SBE/IMM	Received [REQNEW] command.
06/03/14 09:46:44	SYSTEM	Sending ENDOFDAT.DAT.
06/03/14 09:46:45	SBE/IMM	Processed [REQNEW] command.
06/03/14 09:46:49	SBE/IMM	Received [REQEOD] command.
06/03/14 09:46:49	SYSTEM	Sending ENDOFDAT.DAT.
06/03/14 09:46:50	SBE/IMM	Processed [REQEOD] command.
06/03/14 09:46:51	SBE/IMM	Powered off.
06/03/14 09:46:51	SBE/IMM	Power-aown aelay
00/03/14 09:46:53	2RF\1WM	9.0 KBaud COMMUNICATION CHANNEL CLOSED.

Figure 11.1-13: Option <5>Single Transaction

Telemetry Session

Option <6> provides a test telemetry session.

```
Selection [] ? 6
 Enter session interval in seconds [5] (0-86400) [0] ?
Enter the first profile to send [0] (0-9999) [0] ? 0
Enter the starting value of ProfileCounter [0] (0-9999) [0] ? 0
05/27/14 11:31:51 SYSTEM
                            Creating PROFILES.DAT ... done.
                 SYSTEM
05/27/14 11:31:52
                            Creating LASTSENT.DAT ... done.
                            Renaming E?????.DAX .... done.
05/27/14 11:31:52
                  SYSTEM
                 SYSTEM
05/27/14 11:31:52
                            Renaming S?????.DAX .... done.
05/27/14 11:31:52 SYSTEM Updating PROFILES.DAT ... done.
05/27/14 11:31:53 SYSTEM E0000000.DAT exists.
05/27/14 11:31:53 SYSTEM Creating E0000001.DAT from E0000000.DAT.
05/27/14 11:31:53 SYSTEM Copying E0000000.DAT to E0000001.DAT.
E000000.DAT
      1 file(s) copied
05/27/14 11:31:53 SYSTEM C000000.DAT exists.
05/27/14 11:31:53 SYSTEM Creating C0000001.DAT from C0000000.DAT.
05/27/14 11:31:53 SYSTEM Copying C000000.DAT to C0000001.DAT.
C000000.DAT
      1 file(s) copied
05/27/14 11:31:54
                 SYSTEM
                            IM session 1 will begin at 05/27/14 11:31:52.Awake
05/27/14 11:31:54 SYSTEM
                           Waking and proceeding.
05/27/14 11:31:54
                 SYSTEM Starting IM session 1.
05/27/14 11:31:55 SBE/IMM
                            9.6 kBaud communication channel opened.
05/27/14 11:31:55 SBE/IMM Powered on.
05/27/14 11:31:55 SBE/IMM
                            Sending command [\r\n].

    Display shortened for brevity

      •
05/27/14 11:37:19 SBE/IMM
                            Sending command [SETDEBUGLEVEL=2]. ..
05/27/14 11:37:20 SBE/IMM
                            Sending command [SETTERMFROMHOST=255]. .
05/27/14 11:37:20 SBE/IMM
                            Sending command []. .
05/27/14 11:37:20 SBE/IMM
                            Sending command []. .
                            Sending command [GETCD].
05/27/14 11:37:20 SBE/IMM
..... [^C]
05/27/14 11:37:24 SYSTEM
                            Command attempt 2 of 3.
05/27/14 11:37:24 SBE/IMM Powered off. [^C]
05/27/14 11:37:24 SBE/IMM 9.6 kBaud communication channel closed.
```

Figure 11.1-14: Option <6> Telemetry Session

Offloading Last Sent Data

Offload Logging Files is a screen display of files that the Profiler records during the deployment. Option <5> 'Last sent' displays the last Inductive file transmitted to the Profiler firmware.

```
Config: MPP_IM_CT_CM
                                        CF2 V5.10 of Nov 4 2013
                         Pattern Profiler
                    Offload Logging Files Menu
                   Tue Jan 7 09:47:09 2014
Select log to offload:
<1> PROFILES.DAT
 <2> DEPLOY.DAT
 <3> IRQ XCPT.LOG
 <4> Profile Termination Log
 <5> Last sent
 <6> Deployment Termination Condition
<M> previous Menu
 Selection [] ? 5
01/07/14 09:47:10 SYSTEM Reading LASTSENT.DAT ... done.
Oldest profile transmitted is -1
Press any key to continue.
```

Figure 11.1-15: Option <5> Last Sent

Sea-Bird SIMM/UIMM Communication Session Overview

Below is an overview of a communication session between the SIMM, the UIMM, and the Profiler.

- 1. The sequence begins with the SIMM powered off.
- 2. At the completion of a profile, the Profiler powers on the UIMM.
- 3. The UIMM takes control of the inductive line
- 4. The UIMM sends a Wakeup tone to wake the SIMM
- 5. The Profiler sends an identification string to the SIMM via the UIMM.
- 6. The SIMM takes control of the inductive line.
- 7. The Profiler listens to the UIMM for commands transmitted by the SIMM.
- 8. If a command is received within the allowed time period:
 - a. If the command is to terminate the session, go to step 9.
 - b. If no command is received within the allowed time period, go to step 9.
 - c. Otherwise, process the command and go to step 7.
- 9. The Profiler terminates the session and continues its programmed deployment.
- 10. The SIMM releases the inductive line.

Sea-Bird IMM Communication Session Command Sequence

The next section describes technical details of the telemetry session including sample command transmission sequences, and data formats. The file transmission protocol is listed in Appendix A 'Inductive File Transmission Protocol' in this User Manual.

The Wakeup/Identification/Listen pattern repeats three times. If no commands are received after the third attempt, the Profiler terminates the session and continues the programmed deployment.

- Step 1 Wakeup–Profile completion Profiler powers on the UIMM. Sends
 Wakeup tone and identification through the UIM to the SIMM (see table shown next).
- Step 2 Identification–IMM receives the Wakeup/Identification messages.
- Step 3 Listen–Profiler begins the transmission session by listening for commands for three 40 second cycles. If no commands are received after the third attempt, the Profiler terminates the session and continues the programmed deployment.
- Step 4 Begin Transmission Session Profiler receives an inductive file transmission protocol command (see Appendix A in this User Manual).

Identification Messages: Wakeup/Identification				
SIMM Received messages	Description			
WAKE-UP TONE DETECTED WAKE-UP TONE DETECTED	Generated by Profiler's UIMM for ~5 seconds if 'send wakeup tone' is enabled.			
@@@MMP/ML12345- 67/001/01	ID generated by Profiler contains: @@@MMP/SerialNumber/MooringID/UIMM-DeviceID			

Sea-Bird IMM Sample Transmission Session

During the three 40 second listening attempts, the SIMM can respond by capturing the inductive line (CAPTURELINE or FORCECAPTURELINE) and then sending commands to the UIMM. If addressed correctly, the UIMM passes the commands to the Profiler. For example, if the SIMM wants to request the latest un-transmitted file the following would occur.

Options on the Advanced Interface Menu (Figure 11.1-2) set the number of seconds the Profiler listens for the inductive modem command and for the ACK/NAK reply from the surface controller. The Listening Loop default is 40 seconds. The ACK/NAK Reply Timer default is 100 seconds. The timer can be changed to between 30 and 300 seconds.

- The SIMM sends a #ddREQNEW command to the MMP (where dd is the UIMM's DeviceID.) The command REQNEW is passed to the Profiler by the UIMM.
- 2. The Profiler responds by sending the next file available from the files collected since the last successful transmission. The data is sent in packets and the transaction process requires the surface to acknowledge receipt of each packet. If no new file exists, an End-of-Data packet is sent. The Profiler waits for another command.
- 3. The SIMM responds to each packet with a REQACK or a REQNAK, depending on whether the packet was received correctly.
- After the last packet has been sent and acknowledged, the Profiler sends a Cyclical Redundancy Check (CRC) packet that contains only a packet header (no data content). This packet does not expect an acknowledgement.
- 5. If the SIMM wants to request the next un-transmitted file, the process begins again at step 1.
- 6. When the SIMM is finished requesting files, a #nnREQEOD command transmits, causing the Profiler to immediately terminate the session and continue its programmed deployment. Alternatively, not issuing any further commands causes the Profiler to eventually time-out at the end of three listening loops and continue its programmed deployment.

Data Format for File Transmission

When a file is requested, the Profiler first sends a metadata packet for the file. The packet is structured as follows:

char fileName[13];	// 12.3 filespec, plus a space
char profileEndTime[20];	// "mm dd yyyy hh mm ss", plus a space
char mooringID[4];	// %03d, plus a space
char byteCount[12];	<pre>// %11ld, plus a space</pre>
char term[2];	// ">"

Figure 11.1-16: File Metadata Packet

Except for the term field, which is a NULL terminated string, the other fields in the structure are all terminated by a trailing white space.

An example of a metadata packet: E0000000.DAT 07 28 2011 08 50 48 001 88 >

The metadata packet for a particular file is followed by one or more data packets and a final CRC packet. Each of these packets is prefaced with a packet header structured as follows:

Figure 11.1-17: Packet Header Structure

The dataHdr field is terminated by a white space.

For data packets:

dataHdr will contain "DAT " <- note trailing space bytecount will be less than or equal to 4096 CRC will be for this packet's data

For CRC packets:

dataHdr will contain "CRC " <- note trailing space bytecount will be 0 CRC will be cumulative for all the file's data packets

Auxilliary Files

The following files are present during a Profiler deployment, and can be requested with REQFIL. Their contents can provide information about the deployment's progress and status:

PROFILES.DATa 4 byte index of the current profileLASTSENT.DATa 4 byte index of the last profile successfully sent via REQNEWDEPLOY.DATa complete definition of the current Profiler configurationSCHEDULE.TXT(for Pattern Profilers only) a complete listing of the current profile schedule

Sea-Bird Inductive Modem Module Configuration

Following are the McLane recommended configuration settings for the SIMM:

S>gethd

<HardwareData DeviceType='SBE90554 IMM' SerialNumber='70001230'> <Manufacturer>Sea-Bird Electronics, Inc</Manufacturer> <HardwareVersion>41420H.1</HardwareVersion> <HardwareVersion>PCB Type 3, 10345B</HardwareVersion> <MfgDate>2011-04-01</MfgDate> <FirmwareVersion>IMM Ver 1.12</FirmwareVersion> <FirmwareDate>Jun 15 2009</FirmwareDate> <FirmwareLoader>MSP LOADER RS232 57.6K 2007-02-08</FirmwareLoader> </HardwareData> <Executed/>

S>getsd

<StatusData DeviceType='SBE90554 IMM' SerialNumber='70001230'> <HostID>Host ID not set</HostID> <EventSummary numEvents='718'/> <Power><TransmitVoltage>9.0</TransmitVoltage></Power> <SampleDataSummary NumSamples='0' TotalLen='0' FreeMem='16384'/> <HostFileSummary Len='0' CRC='0xFFFFFFF'/> <LineStatus>IDLE</LineStatus> </StatusData> <Executed/>

S>getcd <ConfigurationData DeviceType='SBE90554 IMM' SerialNumber='70001230'> <Settings ConfigType='2' DebugLevel='2' BaudRate='9600' HostID='Host ID not set' GdataStr='GDATA' HostPrompt='x' ModemPrompt='S>' DeviceID='0' EnableHostFlagWakeup='0' EnableHostFlagConfirm='0' EnableHostFlagTerm='0' EnableHostFlagTerm='1'

EnableHostPromptConfirm='1' EnableHostServeOnPwrup='0' EnableAutoIMFlag='1' EnablePrompt='1' EnableHostWakeupCR='1' EnableHostWakeupBreak='0' EnableEcho='1' EnableSignalDetector='1' EnableToneDetect='1' EnableFullPwrTX='0' EnableBackSpace='1' EnableGDataToSample='0' EnableStripHostEcho='0' EnableBinaryData='1' SerialType='1' TermToHost='254' TermFromHost='254' SerialBreakLen='5' MaxNumSamples='40' GroupNumber='0' THOST0='0' THOST1='5' THOST2='3000' THOST3='12000' THOST4='500' THOST5='5' TMODEM2='3000' TMODEM3='18000' TMODEM4='100' /> </ConfigurationData> <Executed/>

S>

UIMM Configuration Settings

Following are the McLane recommended configuration settings for the UIMM:

IMM>gethd <HardwareData DeviceType='SBE90554 IMM' SerialNumber='70001231'> <Manufacturer>Sea-Bird Electronics, Inc</Manufacturer> <HardwareVersion>41420H.1</HardwareVersion> <HardwareVersion>PCB Type 3, 10345B</HardwareVersion> <MfgDate>2011-04-01</MfgDate> <FirmwareVersion>IMM Ver 1.12</FirmwareVersion> <FirmwareDate>Jun 15 2009</FirmwareDate> <FirmwareLoader>MSP LOADER RS232 57.6K 2007-02-08</FirmwareLoader> </HardwareData> <Executed/> IMM>getsd <StatusData DeviceType='SBE90554 IMM' SerialNumber='70001231'> <HostID>Host ID not set</HostID> <EventSummary numEvents='827'/> <Power><TransmitVoltage>9.2</TransmitVoltage></Power> <SampleDataSummary NumSamples='0' TotalLen='0' FreeMem='16384'/> <HostFileSummary Len='0' CRC='0xFFFFFFF'/> <LineStatus>IDLE</LineStatus> </StatusData> <Executed/> IMM>getcd <ConfigurationData DeviceType='SBE90554 IMM' SerialNumber='70001231'> <Settings ConfigType='2' DebugLevel='2' BaudRate='9600' HostID='Host ID not set' GdataStr='GDATA' HostPrompt='x' ModemPrompt='IMM>' DeviceID='1' EnableHostFlagWakeup='0' EnableHostFlagConfirm='0' EnableHostFlagTerm='0'

EnableSerialIMMWakeup='1' EnableHostPromptConfirm='1' EnableHostServeOnPwrup='0'

EnableAutoIMFlag='1' EnablePrompt='1'

EnableHostWakeupCR='1' EnableHostWakeupBreak='0'

EnableEcho='0' EnableSignalDetector='1' EnableToneDetect='0' EnableFullPwrTX='0' EnableBackSpace='1' EnableGDataToSample='0' EnableStripHostEcho='0' EnableBinaryData='1' SerialType='1' TermToHost='254' TermFromHost='255' SerialBreakLen='5' MaxNumSamples='40' GroupNumber='0' THOST0='0' THOST1='5' THOST2='3000' THOST3='12000' THOST4='100' THOST5='5' TMODEM2='3000' TMODEM3='18000' TMODEM4='100' /> </ConfigurationData> <Executed/>

IMM>

Notes

Section 11.2 RBR Mooring Line Modem (MLM)

Version 4.35/4.45 and higher of the Profiler firmware supports RBR Mooring Line Modem (MLM) communication between the Profiler and a surface controller with an RBR Sub-Surface Modem board (the SSM). The surface controller connects to the SSM. For this inductive communications option, the Profiler integrates with an RBR Head End Modem (HEM) with an inductive coupler around the mooring wire.

Regardless of Inductive Modem, the Profiler Firmware uses the same Transmission Protocol. Refer to Appendix A 'Inductive File Transmission Protocol' for details about inductive commands.

Figure 11.2-1: MLM Modem Electronics Board and Inductive Coil

Advanced Interface Options – Inductive Communications

The options that display on the Advanced Interface menu are sensor-dependent. When Inductive Communications are active, several options display for Inductive Communications settings. Advanced Interface settings are critical controls for inductive communications performance. Carefully review the option definitions provided in this section or contact McLane (www.mclanelabs.com) for more information.

Menu commands with "IMM" refer specifically to the Seabird IMM (Inductive Modem Module) and are only available if the Seabird IMM is attached and enabled. Command descriptions with "IM" refer generically to all Profiler inductive modem hardware variations.

onfig	guration: MPP_IM_CT		CF2 V5.00	of Jan	3 2013
	Pattern I	Profil	ler	-	
	Advanced 3	Interf	face		
			- 2012	-	
<0>	FIL Jan 4 II	1 250	dbar/coc		
< 0 >	PD Thursheld (J.250	dbar/sec		
<1>	PR INTESNOID	1045	ubar/sec		
<2>	PR IIMeINTESHOID	120	seconds		
< 3>	Sensor warmup	120	seconds		
<4>	Sensor warmdown	120	seconds		
<5>	FSI/CTD Bytes/Second	17	bytes/sec		
<6>	SBE/41CP Bytes/Second	9	bytes/sec		
<7>	SBE/52MP Bytes/Second	11	bytes/sec		
<8>	FSI/ACM Bytes/Second	33	bytes/sec		
<d> <h></h></d>	Display verbose messages History reset	YES			
<m></m>	profiling Mode PAT	FTERN			
<n></n>	adjust profile couNter	-1			
<p></p>	caPture file enabled	NO			
<f></f>	IMM use Force capture line	YES			nductive Ontions
<k></k>	IM ACK/NAK reply timer	100	seconds	1	nauctive Options
<l></l>	IM Listening loop timer	40	seconds		
<s></s>	IMM configure Surface modem	NO			
<w></w>	IMM send Wakeup tone	YES			
< X >	Save any changes <^C> Dis	scard	changes		

Figure 11.2-2: Inductive Telemetry Settings on the Advanced Interface Menu

Using Bench Test Options

The main Bench Test and Inductive Modem Bench Tests menus provide options to verify and change inductive settings prior to deployment. The main Bench Tests Menu displays only options that are available to installed sensors.

1. From the main Profiler Menu, type 5 at the prompt to display the Bench Tests Menu.

Config:	MPP_CT		CF2 V5.00 of Jan 11 2013
		McLane Researd Patte S/N:	ch Laboratories, USA ern Profiler ML12345-001
		Ma	ain Menu
		Tue Feb 19	9 07:16:21 2013
	<1> Set	: Time	<5> Bench Test
	<2> Dia	agnostics	<6> Deploy Profiler
	<3> Fla <4> Sla <c> Con</c>	ash Card Ops eep figure	<7> Offload Deployment Data <8> Contacting McLane

Figure 11.2-3: Profiler Main Menu

Config: MPP_IM_	CT_CM_FL_TU_OP_M	2	CF2	V5.13	of	May	05	2014
	Pattern	n Profile	er		-			
	Bencl	n Tests						
	Tue May 6 (09:01:52	201	4	-			
CTD utilities:								
<1> Seabird 4	1CP CTD communica	ation						
<2> Seabird 4	1CP CTD pressure							
<3> Seabird 4	1CP CTD average p	pressure						
<4> Seabird 4	1CP CTD temperati	are reco	rd					
System evaluat	ion:							
<7> Motor ope	ration							
<8> Set Brake								
<9> Independe	nt Watchdog							
<d> Detailed</d>	schedule							
<s> Recover s</s>	chedule							
Sensor & Optio	n tests:							
<i> Seabird I</i>	nductive Modem							
Exit:								
Selection [] ?	m							

Figure 11.2-4: Profiler Bench Tests Menu

- 2. From the main Bench Tests menu, type *I* at the prompt to display the RBR MLM Bench Test Menu (Figure 11.2-5).
- 3. Type *1* to connect directly with the MLM.

Config: MPP	_IM_CT_CM_MP	CF2 V5.07 of Se	ep 5 2013
	Pattern Pr RBR Mooring Line Mode	ofiler m Bench Test Menu	
	Thu Sep 12 07:1	0:24 2013	
<1> Dire <2> Rest <3> Rest <4> Repo <5> Sing <6> Tele <m> retu</m>	ect communications (1920 core McLane parameters core factory parameters ort parameter settings gle transaction emetry session arn to previous Menu ction [] ? [^C]	0 Baud) — Dire	ect Communications
09/12/13 07 09/12/13 07	:14:15 RBR/LGR2 Press ^C :14:15 SYSTEM Press ^B	to terminate COMM s to change or confir	session. cm Baud rate.
09/12/13 07 09/12/13 07	14:16 RBR/LGR2 9.6 kBau 14:16 RBR/LGR2 Powered	d communication char on.	nnel opened.

Figure 11.2-5: MLM Bench Test Menu

The Profiler communicates with the RBR MLM at 19200 baud. If this rate is changed (for example after sensor manufacturer servicing) communicating directly with the sensor displays unrelated characters or a communication error (Figure 11.2-6). Fix the error by changing the sensor to the baud rate the Profiler requires.

Figure 11.2-6: Baud Rate Communication Error Examples

Typing [CTRL]-[B] from the sensor-specific Bench Tests menu (Figure 11.2-5) displays the Baud Rate menu (Figure 11.2-7). Use this menu option to temporarily connect at the sensor's current baud rate. Once connected to the sensor, change to the Profiler-required baud rate. Finally, exit the Baud Rate Menu to resume the communications session.

```
Config: MPP_IM_CT_CM_FL_TU_OP_MP CF2 V5.00 of Jan 10 2013

Pattern Profiler
Select new Baud rate

Fri Jan 11 13:48:30 2013

<1> 1200

<2> 2400

<3> 4800

<4> 9600

<5> 19200

<6> 38400

<7> 57600

<G> Go to COMM session
Selection [] ? g
```

Figure 11.2-7: Baud Rate Menu

Direct Sensor Connection

Once connected directly to the MLM, typing commands at the command prompt provides additional sensor information.

Figure 11.2-8: MLM Direct Communications

Restore McLane and Factory Settings

Option <2> and <3> (not shown) from the RBR MLM Bench Test menu restores the McLane or RBR factory settings. Using option <2> requires typing the password *mcl*.

Option <3> (not shown) 'Restore factory parameters' restores the configuration parameters delivered with the RBR Inductive Modem. Option <3> requires the password factory.

The firmware requires the RBR parameters configured by McLane. Changing settings, or resetting to the factory settings prevents the MLM from working correctly with the Profiler.

Display Current Settings

Option <4> 'Report Parameter Settings' displays the RBR MLM inductive modem settings.

Selection []	? 4
09/12/13 07:29	:00 RBR/MLM 19.2 kBaud communication channel opened.
09/12/13 07:29	:01 RBR/MLM Powered on.
09/12/13 07:29	:02 RBR/MLM Sending command [].
09/12/13 07:29	:02 RBR/MLM Sending command [A]
09/12/13 07:29	:02 RBR/MLM Identified as V1.300, S#052538.
09/12/13 07:29	:02 RBR/MLM Sending command [EE TPESCTO 10]
09/12/13 07:29	:03 RBR/MLM baud rate BAUD: 19200.
09/12/13 07:29	:03 RBR/MLM sleep timeout (10ms) ZTO: 6000.
09/12/13 07:29	:03 RBR/MLM transparent max chars before send TPMXC: 512.
09/12/13 07:29	:04 RBR/MLM transparent send char enable TPSNDEN: 0.
09/12/13 07:29	:04 RBR/MLM transparent char timeout (10ms) TPCTO: 25.
09/12/13 07:29	:04 RBR/MLM transparent char timeout enable TPCTOEN: 1.
09/12/13 07:29	:05 RBR/MLM transparent escape sequence TPESC:
x01,x02,x03,x0	4,x05,x06,x07,x08,x08,x07,x06,x05,x04,x03,x02,x01.
09/12/13 07:29	:05 RBR/MLM transparent escape timeout (10ms) TPESCTO: 10.
09/12/13 07:29	:06 RBR/MLM transparent escape timeout enable TPESCTOEN: 1.
09/12/13 07:29	:06 RBR/MLM transparent request ack enable TPACK: 1.
09/12/13 07:29	:06 RBR/MLM transparent display ack enable TPACKDSP: 1.
09/12/13 07:29	:07 RBR/MLM transparent display nak enable TPNAKDSP: 1.
09/12/13 07:29	:07 RBR/MLM modem open channel timeout (10ms) MDOCDUR:
6000.	-
09/12/13 07:29	:07 RBR/MLM modem maximum retry count MDRTRY: 3.
09/12/13 07:29	:08 RBR/MLM Powered off.
09/12/13 07:29	:08 RBR/MLM Power-down delay
09/12/13 07:29	:10 RBR/MLM 19.2 kBaud communication channel closed.

Figure 11.2-9: Option <4> Report Parameter Settings

Single Transaction

Option <5> (not shown) displays a single inductive file transmission.

Telemetry Session

Option <6> runs a test telemetry session.

```
Selection [] ? 6
 Enter session interval in seconds [5] (0-86400) [0] ?
 Enter the first profile to send [0] (0-9999) [0] ?
 Enter the starting value of ProfileCounter [0] (0-9999) [0] ?
09/12/13 08:12:45 SYSTEM Creating PROFILES.DAT ... done.
09/12/13 08:12:45 SYSTEM Creating LASTSENT.DAT ... done.
09/12/13 08:12:46 SYSTEM Renaming E??????.DAX .... done.
09/12/13 08:12:46 SYSTEM Renaming M??????.DAX .... done.
09/12/13 08:12:46 SYSTEM Renaming S?????.DAX .... done.
09/12/13 08:12:46 SYSTEM Updating PROFILES.DAT ... done.
09/12/13 08:12:46 SYSTEM E0000000.DAT exists.
09/12/13 08:12:46 SYSTEM E0000001.DAT exists.
09/12/13 08:12:46 SYSTEM C0000000.DAT exists.
09/12/13 08:12:46 SYSTEM C0000001.DAT exists.
09/12/13 08:12:47 SYSTEM A0000000.DAT exists.
09/12/13 08:12:47 SYSTEM Creating A0000001.DAT from A0000000.DAT.
09/12/13 08:12:47 SYSTEM Copying A0000000.DAT to A0000001.DAT.
A000000.DAT
1 file(s) copied
09/12/13 08:12:47
                   SYSTEM M0000000.DAT exists.
09/12/13 08:12:48 SYSTEM M0000001.DAT exists.
09/12/13 08:12:48 SYSTEM IM session 1 will begin at 09/12/13 08:12:46.
09/12/13 08:12:48 SYSTEM Waking and proceeding.
   ....
                                      Display shortened for brevity
09/12/13 08:23:39 RBR/MLM Listening attempt 1 of 3.
09/12/13 08:23:39 RBR/MLM Sending command [].
09/12/13 08:23:39 RBR/MLM Sending command [X 052571]. ..
09/12/13 08:23:43 RBR/MLM Sending command [.ee reset]. .
09/12/13 08:23:43 RBR/MLM Sending command [.ee tpsnden 0]. .
09/12/13 08:23:44 RBR/MLM Sending command [.ee tpcto 25]. [^C]
09/12/13 08:23:44 SYSTEM Attempt 2 of 3.
09/12/13 08:23:44 RBR/MLM Sending command [].
09/12/13 08:23:45 RBR/MLM Sending command [SSM R]. [^C]
09/12/13 08:23:45 SYSTEM Attempt 2 of 3.
09/12/13 08:23:45 RBR/MLM ERROR! Didn't receive surface response - listening
attempt 1 of 3 failed.
09/12/13 08:23:45 RBR/MLM Listening attempt 2 of 3.
09/12/13 08:23:45 RBR/MLM ERROR! Didn't receive surface response - listening
attempt 2 of 3 failed.
09/12/13 08:23:45 RBR/MLM Listening attempt 3 of 3.
09/12/13 08:23:45 RBR/MLM ERROR! Didn't receive surface response - listening
attempt 3 of 3 failed.
09/12/13 08:23:45 RBR/MLM Powered off. [^C]
09/12/13 08:23:45 RBR/MLM 19.2 kBaud communication channel closed.
```

Figure 11.2-10: Option <6> Telemetry Session

Offloading Last Sent Data

Offload Logging Files is a screen display of files that the Profiler records during the deployment. Option <5> 'Last sent' displays the last Inductive file transmitted to the Profiler firmware.

```
Config: MPP IM CT CM
                                        CF2 V5.10 of Nov 4 2013
                         Pattern Profiler
                   Offload Logging Files Menu
                    Tue Jan 7 09:47:09 2014
Select log to offload:
<1> PROFILES.DAT
 <2> DEPLOY.DAT
 <3> IRQ_XCPT.LOG
 <4> Profile Termination Log
 <5> Last sent
 <6> Deployment Termination Condition
<M> previous Menu
Selection [] ? 5
01/07/14 09:47:10 SYSTEM Reading LASTSENT.DAT ... done.
Oldest profile transmitted is -1
Press any key to continue.
```

Figure 11.2-11: Option <5> Last sent

RBR MLM Communication Session Overview

Below is an overview of a communication session between the Sub-Surface Modem (SSM), the Head End Modem (HEM), and the Profiler.

- 1. The sequence begins with the SSM sleeping.
- 2. At the completion of a profile, the Profiler powers on the HEM.
- 3. The HEM commands the paired SSM to enter transparent mode.
- 4. The Profiler sends an identification string to the SSM via the HEM.
- 5. The SSM can now send commands to the Profiler via the HEM.
- 6. The Profiler listens to the HEM for commands transmitted by the SSM for a specified amount of time. This amount is configurable in the Profiler's "Advanced Interface" from 30 to 300 seconds. The default is 40 seconds.
- 7. If a command is received within the allowed time period, process the command and go to step 6. If a command to terminate the session is received or no command is received within the allowed time period, go to step 8.
- 8. The Profiler terminates the session and continues its programmed deployment.
- 9. The SSM ends its session.

RBR MLM Communication Session Command Sequence

The next section describes technical details of the telemetry session including sample command transmission sequences, and data formats. The file transmission protocol is listed on Appendix A 'Inductive File Transmission Protocol' in this User Manual.

The Wakeup/Identification/Listen pattern repeats three times. If no commands are received after the third attempt, the Profiler terminates the session and continues the programmed deployment.

- Step 1 Wakeup–Profile completion. Profiler powers on the MLM. Sends Wakeup tone/identification through the HEM to the SSM (see table shown next).
- Step 2 Identification–SSM receives the Wakeup/Identification messages below.
- Step 3 Listen–listens for commands for three 40 second cycles. Commands sent through the SSM/HEM system take the form COMMAND<RETURN>, where the entire command string is relayed to the Profiler. If no commands are received after the third attempt, the Profiler terminates the session and continues the programmed deployment.
- Step 4 Begin Transmission Session– Profiler receives an inductive file transmission protocol command (see Appendix A in this User Manual).

Identification Messages: Wakeup/Identification			
SSM Received messages	Description		
WAKE-UP TONE DETECTED	Generated by Profiler's HEM for ~5 seconds if 'send wakeup		
WAKE-UP TONE DETECTED	tone' is enabled.		
WAKE-UP TONE DETECTED			
@@@MMP/ML12345-67/001/01	ID generated by Profiler contains:		
	@@@MMP/SerialNumber/MooringID/HEM-DeviceID		
	The identification string is sent, and the HEM remains on until		
	Profile 0 (Dive Zero, the initial MMP dive) begins. The HEM		
	then powers off and remains off until the next scheduled		
	transmission session		

ſ

To confirm the communications link, the HEM also powers on when the user commits to a deployment through the Profiler Deployment menu (Proceed with the deployment (Yes/No) [N]? Y).

The power on at Profile 0 is a verification feature only. During this period, the SSM communicates only with the HEM to confirm a proper link – for example, issuing commands to modify or retrieve certain HEM configuration settings. The Profiler firmware itself remains in Suspend Mode while waiting for Dive Zero, and does not listen, or respond, to the HEM until the deployment starts and a scheduled transmission session begins.

RBR MLM Sample Transmission Session

During the three 40 second listening attempts, the SSM can respond by sending various commands through the HEM to the Profiler. In the transparent mode established by the HEM when the session is initiated, everything the SSM transmits is passed verbatim to the Profiler, including any arguments for commands that require them, such as "REQFIL filename.ext".

The SSM can respond by capturing the inductive line (CAPTURELINE or FORCECAPTURELINE) and then sending various commands to the MLM. If addressed correctly, the MLM passes the commands to the Profiler. For example, if the SSM wants to request the latest un-transmitted file the following would occur.

Options on the Advanced Interface Menu set the number of seconds the Profiler listens for the inductive modem command and for the ACK/NAK reply from the surface controller. The Listening Loop default is 40 seconds. The ACK/NAK Reply Timer default is 100 seconds. The timer can be changed to between 30 and 300 seconds.

For example, if the SSM wants to request the latest un-transmitted file:

- 1. The SSM sends a REQNEW command to the Profiler. The command REQNEW is passed to the Profiler by the HEM.
- 2. The Profiler responds by sending the next file available from the files collected since the last successful transmission. The data is sent in packets and the transaction process requires the surface to acknowledge receipt of each packet. The length of time the Profiler will wait for a REQACK or REQNAK is configurable in the Profiler's "Advanced Interface" from 30 to 300 seconds. The default is 100 seconds. If the MMP has no new file to offer, it will reply with an End-of-Data packet and wait for another command.
- 3. The SSM responds to each packet with a REQACK or a REQNAK, depending on whether the packet was received correctly.
- 4. After the last packet has been sent and acknowledged, the Profiler sends a CRC packet that contains only a packet header (no data content). This packet does not expect an acknowledgement.

- 5. If the SSM wants to request the next un-transmitted file, the process begins again at step 1.
- 6. Otherwise, when the SSM is finished requesting files, it should send a REQEOD command. This causes the Profiler to immediately terminate the session and continue its programmed deployment. Alternatively, simply not issuing any further commands will cause the Profiler to eventually time-out at the end of three listening loops and continue its programmed deployment.

Example MLM Inductive Telemetry Session

ID generated by Profiler contains:

@@@MMP/ML12672-01/001/01 SSM command	@@@MMP / SerialNumber / MooringID / IMM DeviceID HEM reply
REQNEW	E0000000.DAT 12 23 2010 08 00 42 001 1024 >
REQACK	DAT [binary file contents transmitted here]
REQACK	CRC [binary CRC transmitted here]
REQNEW	etc as above

Data Format for File Transmission

When a file is requested, the Profiler first sends a metadata packet for the file. The packet is structured as follows:

typedef struct	
{	
char fileName[13];	<pre>// 12.3 filespec, plus a space</pre>
char profileEndTime[20];	// "mm dd yyyy hh mm ss", plus a space
char mooringID[4];	// %03d, plus a space
char byteCount[12];	// %11ld, plus a space
char term[2];	// ">"
} metaDataStruct;	

Figure 11.2-1: File Metadata Packet

Except for the term field, which is a NULL terminated string, the other fields in the structure are all terminated by a trailing white space.

An example of a metadata packet: "E0000000.DAT 07 28 2011 08 50 48 001 88 >" (not including the quotes) The metadata packet for a particular file is followed by one or more data packets and a final CRC packet. Each of these packets is prefaced with a packet header structured as follows:

typedef struct	
{	
char dataHdr[4];	// "DAT" or "CRC", plus a space
short byteCount;	<pre>// 2 bytes. Bytes in the whole packet;</pre>
	<pre>// these 8 bytes, plus the packet size</pre>
short CRC;	// A 16bit CCITT standard CRC.
} packetHeader;	

Figure 11.2-2: Packet Header Structure

The dataHdr field is terminated by a white space.

For data packets:

dataHdr will contain "DAT " <- note trailing space bytecount will be less than or equal to 4096 CRC will be for this packet's data.

For CRC packets:

dataHdr will contain "CRC " <- note trailing space bytecount will be 0 CRC will be cumulative for all the file's data packets

Auxilliary Files

The following files are present during a Profiler deployment, and can be requested with REQFIL. Their contents can provide information about the deployment's progress and status:

- PROFILES.DAT a 4 byte index of the current profile
- LASTSENT.DA a 4 byte index of the last profile successfully sent via REQNEW
- DEPLOY.DAT a complete definition of the current Profiler configuration
- SCHEDULE.T (for Pattern Profilers only) a complete listing of the current profile schedule

Appendix A Inductive File Transmission Protocol

Inductive Telemetry commands transmit deployment files and execute various other functions between the Profiler and a surface controller near real-time. These commands can be grouped into three types: File Commands, Control Commands, and Profiling Commands. Some sensors support File Decimation and/or Data File Reduction commands which can reduce the size of files.

File Decimation

The Profiler supports Data File Decimation for sensors with this function. Decimation determines how many data records the surface controller retrieves upon request. For example, a decimation value of 2 causes the Profiler firmware to retrieve one record then skip the next record. For a decimation value of 1, the Profiler firmware retrieves every record.

Data File Reduction

The Profiler supports data file reduction for sensors with this function, such as the Nortek Aquadopp II. The Aquadopp II allows the user to select which columns of data to include in a transmitted file. Profiler firmware v5.13 and higher supports both data reduction and file decimation for the Aquadopp II to select the decimation setting, and the columns of data for inductive transmissions.

Inductive Telemetry Commands

Regardless of inductive modem type, the Profiler commands have the same protocol. For Control commands, the request can display and/or change settings.

File Commands		
Command	Profiler Action	
REQNEW	 Send next available file in the list of files collected since the last successful transmission: Profiler responds with a metadata packet and waits for acknowledgement. SIMM acknowledges with REQACK. Profiler responds with first data packet. SIMM (Surface Inductive Modem Module) acknowledges with REQACK or REQNAK. If REQACK, Profiler possibly responds with next packet. If REQNAK, Profiler responds with the same packet again. Any additional packets are sent and acknowledged similarly. When data is exhausted, Profiler responds with a CRC packet. Profiler returns to listening loop. During REQNEW: If 3 consecutive REQNAK replies are received, or if the Profiler hears nothing from the SIMM while waiting for acknowledgement, the Profiler abandons the requested file and returns to the listening loop. For 3 failed REQNEW attempts for a specific file: The file is renamed from DAT to DAX (for example, C0000XXX.DAT to C0000XXX.DAX) and taken out of the transmission queue. Further attempts to retrieve the file can be made at any time by specifically requesting it with REQFIL C0000123.DAX 	
REQDCN	(Only for Decimation - Not supported by all sensors) Send a decimated version of the next available file in the list of files collected since the last successful transmission using the same protocol as REQNEW.	
REQFIL filename.ext	Send a specific file, if filename.ext exists on the flash card, using the same protocol as REQNEW. Failed attempts, however, do not provoke file renaming.	
REQDCF filename.ext nnn	(Only for Decimation - Not supported by all sensors) Send an nnn-th decimated version of the requested file, if <i>filename</i> .ext exists on the flash card, using the same protocol as REQNEW. Failed attempts, however, do not provoke file renaming.	

File Commands		
Command	Profiler Action	
REQDIR	Send a file containing a listing of all files on the flash card using the same protocol as REQNEW. The filename reported in the metadata packet comprises a current timestamp of the form YYMMDDHH.PDR (Year Month Day Hour). This can include ~ 1,100 files. The most recent REQDIR listing is saved in <i>filename</i> .DIR for possible offload via REQFIL [<i>filename</i>].dir	
REQFDR <i>filename.ext</i>	Send a listing of the first file found on the flash card that matches filename.ext. The listing is in the format "FILENAME.EXT bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb	
REQACK	Acknowledge receipt of the current file packet and requests the next packet in the file.	
REQNAK	Request retransmission of the current file packet.	
REQETK	Request "end transmission" for current file transfer and continue telemetry session.	

If control commands are issued with no argument, the firmware returns the current parameter setting. Adding an argument to a control command changes the parameter. Examples of commands with and without arguments are provided below. The firmware terminates telemetry messages with the > character.

Control Commands		
Command	Profiler Action	
REQCLK Example of parameter request: REQCLK Reply: ACKCLK <i>ClockTime</i> >	Request or set the Profiler's Real Time Clock in seconds. The argument for time is represented as seconds since 01/01/1970.	
Example with argument: Command: REQCLK 1433760561 Reply: ACKCLK 1433760561>		
REQNUM Example of parameter request: REQNUM Reply: ACKNUM <i>ProfileNumber</i> >	Request or set the Profiler's current profile number. Minimum = 0, Maximum = 9999	
Example with argument: Command: REQNUM 0 Reply: ACKNUM 0>		
REQACM Example of parameter request: REQACM	(Only for Profilers with an enabled ACM that supports a variable sampling rate and firmware release version 5.0 or higher)	
Reply: ACKACM <i>SamplingRate></i> Example with argument: Command: REQACM 02	For example, the FSI ACM + supports integer rates from 1 to 10, and the Norktek Aquadopp II supports integer rates of 1, 2, 4, 8, 10.	
Reply: ACKACM 02>	Allows a surface controller to request or reconfigure the sampling rate of an enabled ACM that supports a variable sampling rate in the middle of a deployment. After reconfiguring, following profiles in the deployment will be sampled at the new rate.	
	Profiler accepts a new ACM sampling rate between 1 Hz and 10 Hz and responds with "ACMACM ss".	
	Minimum = 1, Maximum = 10 (ACM model dependent) If the commanded rate is less than 1 or greater than 10, the Profiler continues to use the previous rate.	

Control Commands		
Command	Profiler Action	
REQDSP Example of parameter request: REQDSP Reply: ACKDSP <i>VerboseMode></i> Example with argument: Command: REQDSP 1	Request or set the main UART verbose mode VerboseMode: 0=disable, 1=enable	
Reply: ACKDSP 1> REQWRM Example of parameter request: REQWRM Reply: ACKWRM <i>WarmUpSeconds</i> <i>WarmDownSeconds</i> > Example with argument: Command: REQWRM 30 30 Reply: ACKWRM 30 30>	Request or set the sensor warm-up and warm-down. Minimum =0, Maximum = 300. Default = 120	
REQBAK Example of parameter request: REQBAK Reply: ACKBAK <i>Iterations Rate Time></i> Example with argument: Command: REQBAK 2 45 60 Reply: ACKBAK 2 45 60>	Request or set the BackTrack Variables Iteration: Minimum = 1, Maximum = 5, Default = 3 Rate: Minimum =0, Maximum = 1000, Default = 45 (in dbar/second * 1000) Time: Minimum = 5, Maximum = 300, Default = 60 (in seconds)	
REQRMPExample of parameter request:REQRMPReply: ACKRMP RampDuration>Example with argument:Command: REQRMP 45Reply: ACKRMP 45>REQRSTExample:Command: REQRSTReply: ACKRST>Command: REQRSTReply: ACKRST>Reply: ACKRST>	Request or set the ramp duration in seconds. Mininum = 2, Maximum = 90 Default = 30. Reset the Profiler, if issued two times in a row with no other commands between.	

Control Commands			
Command	Profiler Action		
REQACTExample:Command: REQACTReply: ACKACT ACM:1 CTD:1 FLR:0CH4:0 CO2:1 TRA:0>Example:Command: REQACT CH4 1activates CH4 sensorExample:Command: REQACT ALL 1activates all self logging sensors	Request or set a self-logging sensor's data acquisition state Reply to request at left indicates that the currently installed sensors, ACM, CTD, and CO2 sensors are active, and FLR, CH4 and TRA sensors are not.		
Example: Command: REQACT ALL 0 deactivates all self logging sensors			
REQQUE Example: Command: REQQUE Reply: ACKACT ACM:1 CTD:1 FLR:1 CH4:1 CO2:1 TRA:1> Example: Command: REQQUE CO2 0 excludes CO2 sensor from file transmission queue. Example: Command: REQQUE ALL 1	Request or set whether or not a self-logging sensor is in the data offload queue for REQNEW and REQDCN commands. Reply to request at left indicates ACM, CTD, FLR, CH4, CO2 and TRA sensor data is included in the file transmission queue.		
includes all self logging sensors in file transmission queue.			

June 2017

Profiling Commands	
Command	Profiler Action
REQEOD	Terminate the telemetry session and power off the UIMM.
	The response to this command is a single metadata packet where the filename field contains "ENDOFDAT.DAT " The timestamp field reflects the Profiler's clock when the command was received. The bytecount field is 0.
	The Profiler does not expect, or wait for, acknowledgement of this packet.
REQUND	Only for Profilers with inductive charging option.
Reply: ACKUND	Clear the docking flag. Continue telemetry session.
REQPRF Example: REQPRF Direction StartTime Shallow Deep StopCheck TimeLimit ShallowErr DeepErr	Only for Adaptive Profilers with inductive charging option (not available in Standard or Pattern Profilers). See Adaptive Profiling documentation for details of this command. Command profile setting.
REQSUS Example: REQSUS SuspendUntil Reply: ACKSUS SuspendUntil>	Only for Adaptive (not available in Standard or Pattern Profilers). See Adaptive Profiling documentation for details of this command. Suspend until some future clock time, then resume telemetry session.
REQCHG	Only for Profilers with inductive charging option.
	Go to charging dock

June 2017

Profiling Commands	
REQCNT	Only for Adaptive Profilers with inductive charging option (not available in Standard or Pattern Profilers). See Adaptive Profiling documentation for details of this command.
	If in charging mode, leave the dock. Continue with deployment.
XMTSCH dd	(Only for Pattern-Profilers. Not available in Standard or Adaptive profiling mode).
	Prepare to receive a new schedule from a SIMM that has a DeviceID of dd. If the optional dd is not specified, the Profiler assumes the SIMM has a DeviceID of 00 (zero):
	 Profiler responds with XMTACK. Profiler waits 30 seconds for the SIMM to release the inductive line. Profiler configures the SIMM & UIMM for Xmodem use. Profiler idles for 5 seconds to allow SIMM time to start an Xmodem1k-CRC send process. Profiler starts an Xmodem1k-CRC receive process expecting to receive a new schedule file from a SIMM whose DeviceID is dd. If successful, the new schedule is installed in the Profiler. Profiler idles for 5 seconds to allow SIMM time to stop its Xmodem1k-CRC send process. Profiler idles for 5 seconds to allow SIMM time to stop its Xmodem1k-CRC send process.
	normal use. 9. Profiler goes back to listening loop.

June 2017

Other Command Replies	
Command	Profiler Action
MMPERR <invalidcommand></invalidcommand>	Response to an invalid command.
MMPRDY ClockTime>	Only for MLM and DPC telemetry, not available for IMM surface controller. Ready for a command.

June 2017

Appendix B Sea-Bird Underwater Inductive Modem (UIM)

Profiler firmware versions 3.10 and higher supports Sea-Bird UIM board (with an inductive coupler around the mooring wire). A surface controller with a Sea-Bird inductive modem link is required. For the inductive modem interface, the Profiler electronics stack contains a Sea-Bird UIM (Underwater Inductive Modem) board (SBE44 V1.8) with an inductive coupler around the mooring wire (a surface inductive modem and surface controller are also required for this option).

This section describes the communications sequence between the Profiler and the UIM. A detailed description of SIM/UIM protocols is also provided.

Regardless of Inductive Modem, the Profiler Firmware uses the same Transmission Protocol. Refer to Appendix A in this User Manual 'Inductive File Transmission Protocol' for details about inductive commands.

Figure B-1: Sea-Bird UIM Modem Electronics Board

Sea-Bird UIM Communication Session Overview

Below is a process overview of the communication session between the Surface Inductive Modem (SIM), the Underwater Inductive Modem (UIM) and the Profiler.

- 1. The sequence begins with the SIM powered off.
- 2. At the completion of a profile, the Profiler powers on the UIM.
- 3. The UIM sends a tone detect to wake the SIM.
- 4. The Profiler listens for commands transmitted by the SIM as the SIM performs a Cyclic Redundancy Check (CRC) to ensure that data transmitted is valid. If the CRC confirms valid data, the SIM sends the Profiler a command to 'send the next piece of data'. If the CRC detects invalid data, the SIM sends the Profiler a 'resend data' command.

The CRC calculated is a 16bit CCITT standard CRC.

- 5. The Profiler sends a null record after the last group of data to tell the SIM that the 'end of the data' has been reached.
- 6. The Profiler powers off the UIM and waits to perform the next profile.

When data transmission is complete, the SIM must be powered off before the next tone detect is sent or both the surface modem and the inductive modem will be in 'listening mode' simultaneously and cannot perform the communication sequence.

Sea-Bird UIM Communication Session Command Sequence

The next section describes technical details of the telemetry session including sample command transmission sequences, and data formats. The file transmission protocol is listed in Appendix A 'Inductive File Transmission Protocol' in this User Manual.

Commands sent through the SIM/UIM system always take one of two forms: #nnCOMMAND or bnnCOMMAND.

The nn is the UIM identification and is used by the UIM to identify whether a command is directed toward it. If the command is meant to be handled by the UIM, the COMMAND portion is relayed to the serial instrument (in this case the Profiler).

- The '#', indicates that the SIM and UIM are awaiting ASCII data terminated with a pre-defined termination character.
- The 'b', indicates that the SIM and UIM are awaiting binary data terminated by a transmission gap.

The timeouts are different for the two cases and are explained in the Sea-Bird documentation.

UIM Sample Transmission Session

This section provides a sample transmission session. To confirm the communications link, the UIM initially powers 'on' after 'V' (Verify and Proceed) is selected from the Profiler Deployment menu. The UIM remains on until Profile 0 (the initial Profiler dive) begins, then powers off and remains off until the next scheduled transmission session. This is a verification feature only. The Profiler firmware itself remains in Suspend Mode and does not listen or respond to the UIM until the scheduled transmission session.

- The 'Tone detect' board attached to the SIM receives a tone and responds by setting its detect line (JP4 pin 2) low. The Profiler allows 40 seconds to receive a response from the surface. If no tone is received, the tone will be sent again a maximum of two more times (spaced 40 seconds apart). The UIM should automatically generate a 4800 Hz tone for 2.5 seconds detectable by the Tone Detect board on the SIM. If the UIM tone is not sent (this occurs because the SBE44 was not specifically designed for the Profiler Inductive Modem interface), the Profiler initiates the wake-up tone to ensure that the SIM detect line is properly set.
- 2. The surface controller (SC) monitors the 'Tone detect' board tone detect line. Receipt of a tone indicates that the Profiler is ready to transmit data. The SC powers on the SIM and sends the necessary commands to upload the data.
- 3. The Profiler listens for 3 intervals of 40 seconds each for one of the recognized data upload commands.
- 4. When power is applied to the SIM board, the board sends a wake-up signal down the mooring wire (if the UIM is up and running the wake-up signal is ignored). If the UIM is not ready, this wake-up activates the UIM.

- 5. A transmit-receive-acknowledge sequence proceeds as follows until the Profiler has sent the entire file:
 - If the SC requires the newest data it relays a #nnREQNEW command to the Profiler (eg. #01REQNEW). The '#' defines the request to the UIM to transmit ASCII data with a termination character, configured as '>'; nn is the ID of the UIM attached to the Profiler; REQNEW is the command relayed by the UIM to the Profiler. Everything after the nn ID is relayed verbatim to the UIM, including the filename in the case of REQFIL.
 - The Profiler responds by sending the next file available from the files collected since the last successful transmission. If a limited number of files are stored and there is trouble transmitting, the oldest files may be deleted before they are transmitted. This risks the loss of the oldest data, but does not interfere with the algorithm which sends the next available data. The data is sent in packets (defined in the 'Data Format for File Transmission' section of this chapter) and the transaction process requires the surface to acknowledge receipt of each packet.
- 6. After the Profiler sends the entire data file, a CRC packet is sent that contains only a packet header (no data content).

If required, the SC can request transmission of a particular file by sending #nnREQFIL filename.ext (where filename.ext conforms to the 8.3 format). The Profiler will send the requested file (DOS) with the same protocol used to answer REQNEW.

- 7. If the SC requests a full directory listing of files on the flash card, (by sending a #nnREQDIR command) the Profiler responds by sending a listing of file names and file sizes as described in the 'File Transmission Protocol' section of this document.
- 8. If the Profiler has no data to offer it will reply with an EOD packet and wait for a command. The Profiler will terminate communications if a termination command is sent by the surface. The SC maintains primary control of the communication. Time-out thresholds are used as a backup. If no command is received the Profiler will time out after the third 40 second session.
- 9. If the SC is finished requesting data, and sends a #nnREQEOD command, the Profiler powers off the UIM and continues with the programmed deployment.

Control of Communication Session

Noise on the mooring cable could falsely trigger the Tone Detect board attached to the SIM (however, the UIM is powered on only during the communication transaction period at the end of a profile). The Profiler/UIM pair exclusively initiate a communication session. Once the session starts, the SC controls data transmission and the end of the communication session. The communication session will timeout in the absence of surface controller response.

Data Format for File Transmission

When a file or combination of files is requested, the Profiler first sends the metadata for the next file to be transmitted.

Mooring ID (a three position numeric identifier) is defined from the Deployment Menu and embedded in the metadata to identify files from multiple Profilers on the same mooring line.

The metadata structure is as follows:

```
typedef struct
{
    char fileName[13]; // filename.ext - followed by white space
    char profileEndTime[20]; // mm dd yyyy hh mm ss - followed "
    char mooringID[4]; // ### - followed by "
    char byteCount[12]; // ###### - followed by "
    char term[2];
} metaDataStruct;
```

Figure B-2: File Metadata Packet

Each character field is terminated by a white space, rather than a null. The metadata for a single file is followed by a series of data packets and ends with an EOD packet. Each packet is prefaced with the packet header.

```
typedef struct
{
char dataHdr[4]; // "DAT", "CRC"
short byteCount; // of whole pkt 8 + pktdatasize
short CRC; // CRC
} packetHeader;
```

Figure B-3: Packet Header Structure

The character field dataHdr is terminated by a white space. Immediately after the packet header, the packet content is transmitted. A "DAT" packet will contain up to 4KB of data; a

"CRC" packet will indicate that there are no more packets to be sent. There is no content for the CRC packet. The CRC value reported in this packet is the value for the entire file.

Sea-Bird Firmware and Settings for 4K Packets

SIM V2.8 (or later) and the UIM, SBE44 V1.9 (or later) support binary relay commands. The binary relay command works like the standard relay command except that all characters received by the SBE44 are relayed to the SIM and the relay termination character is ignored.

Settings for 4K Packets

The SIM and UIM settings in the transmission sequence scenario described in this Appendix are shown next. These settings were designed to effectively coordinate the communications relay and data packet transmission between the MMP, SIM and UIM. Guidelines for these settings are below.

- The UIM terminates Relay when the time since the last character the SBE44 receives exceeds the time specified by the RTERMMAX command (5500 msec default) or the time specified by the RTOTALMAX command (600 sec default).
- Relay is terminated by the SIM when the time since the last character received by the SIM is greater than the time specified by the BINARYGAP command (5000MSEC default) or the total time specified by the RELAYMAX command (600 SEC default) is exceeded.
- UIM command RTERMMAX must be greater than SIM command BINARYGAP.
- Setting the PONTONE command to 'Yes' should cause the UIM to send a wake up tone to the SIM upon power-up. If the wake-up tone is not sent, the MMP forces a tone detect that wakes up the SIM after 40 seconds.

SIM Settings

